TOWARDS A MOLECULAR THEORY FOR THE VAN DER WAALS–MAXWELL DESCRIPTION OF FLUID PHASE TRANSITIONS

2002 ◽  
Vol 01 (02) ◽  
pp. 381-406 ◽  
Author(s):  
ANDRIY KOVALENKO ◽  
FUMIO HIRATA

We briefly review developments of theories for phase transitions of molecular fluids and mixtures, from semi-phenomenological approaches providing equations of state with adjustable parameters to first-principles microscopic methods qualitatively correct for a variety of molecular models with realistic interaction potentials. We further present the generalization of the van der Waals–Maxwell description of fluid phase diagrams to account for chemical specificities of polar molecular fluids, such as hydrogen bonding. Our theory uses the reference interaction site model (RISM) integral equation approach complemented with the new closure we have proposed (KH approximation), successful over a wide range of density from gas to liquid. The RISM/KH theory is applied to the known three-site models of water, methanol, and hydrogen fluoride. It qualitatively reproduces their vapor-liquid phase diagrams and the structure in the gas as well as liquid phases, including hydrogen bonding. Furthermore, phase transitions of water and methanol sorbed in nanoporous carbon aerogel are described by means of the replica generalization of the RISM approach we have developed. The changes as compared to the bulk fluids are in agreement with simulations and experiment. The RISM/KH theory is promising for description of phase transitions in various associating fluids, in particular, electrolyte as well as non-electrolyte solutions and ionic liquids.

Author(s):  
Robert H. Swendsen

Phase transitions are introduced using the van der Waals gas as an example. The equations of state are derived from the Helmholtz free energy of the ideal gas. The behavior of this model is analyzed, and an instability leads to a liquid-gas phase transition. The Maxwell construction for the pressure at which a phase transition occurs is derived. The effect of phase transition on the Gibbs free energy and Helmholtz free energy is shown. Latent heat is defined, and the Clausius–Clapeyron equation is derived. Gibbs' phase rule is derived and illustrated.


1997 ◽  
Vol 492 ◽  
Author(s):  
V. Yu. Gusev

ABSTRACTWe report the results of the Monte Carlo simulation study of the fluid phase transitions in micropores. The Gibbs, Canonical, and Grand Canonical ensembles were employed to obtain the adsorption isotherms of the Lennard-Jones nitrogen in carbon slit micropores at 77.4 K. It is shown for the first time that depending on the choice of the parameters of the Monte Carlo simulations, such as the number of particles in the simulation cells, the sampling from the Gibbs ensemble may supply either van der Waals-type or hysteresis loops in the phase transition zones. The existence of these loops is confirmed by independent sampling from the Canonical ensemble using Widom method of test particles. The Grand Canonical ensemble simulations always produce hysteresis loops within the phase transition zone. Outside the phase transition zones, sampling from all three ensembles yield essentially identical isotherms.


2018 ◽  
Author(s):  
Sherif Tawfik ◽  
Olexandr Isayev ◽  
Catherine Stampfl ◽  
Joseph Shapter ◽  
David Winkler ◽  
...  

Materials constructed from different van der Waals two-dimensional (2D) heterostructures offer a wide range of benefits, but these systems have been little studied because of their experimental and computational complextiy, and because of the very large number of possible combinations of 2D building blocks. The simulation of the interface between two different 2D materials is computationally challenging due to the lattice mismatch problem, which sometimes necessitates the creation of very large simulation cells for performing density-functional theory (DFT) calculations. Here we use a combination of DFT, linear regression and machine learning techniques in order to rapidly determine the interlayer distance between two different 2D heterostructures that are stacked in a bilayer heterostructure, as well as the band gap of the bilayer. Our work provides an excellent proof of concept by quickly and accurately predicting a structural property (the interlayer distance) and an electronic property (the band gap) for a large number of hybrid 2D materials. This work paves the way for rapid computational screening of the vast parameter space of van der Waals heterostructures to identify new hybrid materials with useful and interesting properties.


2007 ◽  
Vol 5 ◽  
pp. 113-120 ◽  
Author(s):  
R.Kh. Bolotnova

The method of construction the wide-range equations of state for organic liquids, describing the gas and liquid phases including dissociation and ionization which occurs during an intense collapse of steam bubbles and accompanied by ultra-high pressures and temperatures, is proposed.


1981 ◽  
Vol 13 (11) ◽  
pp. 993-1002 ◽  
Author(s):  
Koichi Fujisawa ◽  
Tomoo Shiomi ◽  
Fumiyuki Hamada ◽  
Akio Nakajima

Sign in / Sign up

Export Citation Format

Share Document