ELECTRON TOPOLOGICAL AND ENERGETIC STUDY OF THE INTERMOLECULAR HALOGEN BONDING INTERACTIONS IN COMPLEXES H2O ⋯ M (M = F2, ClF, ANDCF4)

2009 ◽  
Vol 08 (04) ◽  
pp. 615-629 ◽  
Author(s):  
HAI-BEI LI ◽  
YU BIN BAI ◽  
SHAN XI TIAN ◽  
JINLONG YANG

The halogen bonding complexes H 2 O ⋯ M ( M = F 2, ClF , and CF 4) in comparison with the hydrogen bonding H 2 O ⋯ HF complex are studied by high-level ab initio calculations and electron topological atoms-in-molecules (AIM) analyses. The basis set superposition error corrections are important to predict if the structures are in good agreement with the experimental results. Both the CCSD(T)/aug-cc-pVTZ calculations and the AIM analyses indicate a interaction strength order: H 2 O ⋯ HF > H 2 O ⋯ ClF ⋯ H 2 O ⋯ F 2 ⋯ H 2 O ⋯ CF 4, with the interaction energies –7.91, –4.16, –1.11, and –1.05 kcal/mol, respectively. The symmetry-adapted perturbation theory analyses have been carried out towards understanding of the nature of the halogen bonding interactions in the complexes H 2 O ⋯ M ( M = F 2, ClF , and CF 4), where the exchange energies are the predominant repulsive components. For the complexes involving polar monomers, the hydrogen bonding H 2 O ⋯ HF and the halogen bonding H 2 O ⋯ ClF , the largest attractive contributions are the electrostatic energies. However, in H 2 O ⋯ F 2 and H 2 O ⋯ CF 4, the attractive dispersion energies become more important, and the induction energy in the former complex is a little higher than that in the latter. In contrary to the red-shifts of H – F , Cl – F , and F – F bond stretching vibrational frequencies in the complexes H 2 O ⋯ M ( M = HF , ClF , and F 2), the blue-shifts are predicted for C – F bonds neighboring water in H 2 O ⋯ CF 4.

2020 ◽  
Vol 128 (8) ◽  
pp. 1077
Author(s):  
В.П. Булычев ◽  
М.В. Бутурлимова ◽  
К.Г. Тохадзе

The frequencies and intensities of IR absorption bands of symmetric and asymmetric H-bonded complexes [FL1FL2F]- (L1, L2 = K-meson Ka, proton H, deuton D, and triton T) are calculated. The equilibrium configuration and potential energy and dipole moment surfaces of isotopologues [FL1FL2F]- were calculated by the MP2/6-311++G(3df,3pd) method with the basis set superposition error taken into account. The calculations of spectral parameters with allowance for anharmonic interactions of all vibrations were carried out using the second-order vibrational perturbation theory. Variation of Li and L2 masses in wide regions allowed significant changes in the forms of normal vibrations and values of anharmonic interaction constants upon isotopic substitution to be obtained. The trends in the changes of spectral parameters were determined upon transition from one symmetric isotopologue to another and upon transition from symmetric to asymmetric isotopologues. The D-F stretching band frequency predicted for [FHFDF]- is in good agreement with the experimental value. The assignment of this band was improved.


2004 ◽  
Vol 03 (04) ◽  
pp. 599-607 ◽  
Author(s):  
XUE-HAI JU ◽  
HE-MING XIAO

Density functional method was applied to the study of the highly efficient primary explosive 2-diazo-4,6-dinitrophenol (DDNP) in both gaseous tautomers and its bulk state. Two stable tautomers were located. It was found that the structure (I) with open diazo, i.e. with linear CNN, is more stable than that with diazo ring tautomer (II) of DDNP. The structure I is in good agreement with the structure in the bulk. The lattice energy is -89.01 kJ/mol, and this value drops to -83.29 kJ/mol when a 50% correction of the basis set superposition error was adopted. The frontier bands are quite flat. The carbon atoms in DDNP make up the upper valence bands. While the lower conduction bands mainly consist of carbon and diazo N atoms. The bond populations of C–N bonds (both C–Nitro and C–Diazo) are much less than those of the other bonds and the detonation may be initiated through the breakdown of C–N bonds.


1998 ◽  
Vol 54 (5) ◽  
pp. 671-676 ◽  
Author(s):  
D. Becker ◽  
M. Botoshansky ◽  
N. Gasper ◽  
F. H. Herbstein ◽  
M. Karni

The monoclinic crystals (space group P21/a, Z = 8) of 2-phenyl-4-hydroxyphthalazin-1-one, C14H10N2O2, have two independent molecules (A and B) in the asymmetric unit. Both occur as the lactim–lactam (hydroxy–one) structure, which is also found in the parent molecule maleic hydrazide (both triclinic and monoclinic polymorphs), dichloromaleic hydrazide and luminol (3-aminophthalhydrazide). The molecular arrangement is based on strings of alternating A and B molecules linked by hydroxyl...carbonyl hydrogen bonds, with only van der Waals interactions between adjacent strings. Comparison is made of the measured bond lengths for (monoclinic) maleic hydrazide and values from high-level ab initio calculations, and reasonably good agreement is obtained, with indications of improvements when allowance is made for electron correlation and hydrogen bonding.


2018 ◽  
Author(s):  
Manoj Kumar Kesharwani ◽  
Nitai Sylvetsky ◽  
Debashree Manna ◽  
Jan M.L. Martin

<p>We have re-evaluated the X40x10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)–MP2 “high-level corrections” (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies, and turns out to be more important for noncovalent interactions than is generally realized; ; (n-1)sp subvalence correlation is much less important. The (n-1)d subvalence term is dominated by core-valence correlation; with the smaller cc-pVDZ-F12-PP and cc-pVTZ-F12-PP basis sets, basis set convergence for the core-core contribution becomes sufficiently erratic that it may compromise results overall. The two factors conspire to generate discrepancies of up to 0.9 kcal/mol (0.16 kcal/mol RMS) between the original X40x10 data and the present revision.</p>


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1106
Author(s):  
Esther J. Ocola ◽  
Jaan Laane

The conformations of 2-cyclopenten-1-ol (2CPOL) have been investigated by high-level theoretical computations and infrared spectroscopy. The six conformational minima correspond to specific values of the ring-puckering and OH internal rotation coordinates. The conformation with the lowest energy possesses intramolecular π-type hydrogen bonding. A second conformer with weaker hydrogen bonding has somewhat higher energy. Ab initio coupled-cluster theory with single and double excitations (CCSD) was used with the cc-pVTZ (triple-ζ) basis set to calculate the two-dimensional potential energy surface (PES) governing the conformational dynamics along the ring-puckering and internal rotation coordinates. The two conformers with the hydrogen bonding lie about 300 cm−1 (0.8 kcal/mole) lower in energy than the other four conformers. The lowest energy conformation has a calculated distance of 2.68 Å from the hydrogen atom on the OH group to the middle of the C=C double bond. For the other conformers, this distance is at least 0.3 Å longer. The infrared spectrum in the O-H stretching region agrees well with the predicted frequency differences between the conformers and shows the conformers with the hydrogen bonding to have the lowest values. The infrared spectra in other regions arise mostly from the two hydrogen-bonded species.


2018 ◽  
Author(s):  
Manoj Kumar Kesharwani ◽  
Nitai Sylvetsky ◽  
Debashree Manna ◽  
Jan M.L. Martin

<p>We have re-evaluated the X40x10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)–MP2 “high-level corrections” (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies, and turns out to be more important for noncovalent interactions than is generally realized; ; (n-1)sp subvalence correlation is much less important. The (n-1)d subvalence term is dominated by core-valence correlation; with the smaller cc-pVDZ-F12-PP and cc-pVTZ-F12-PP basis sets, basis set convergence for the core-core contribution becomes sufficiently erratic that it may compromise results overall. The two factors conspire to generate discrepancies of up to 0.9 kcal/mol (0.16 kcal/mol RMS) between the original X40x10 data and the present revision.</p>


1988 ◽  
Vol 53 (10) ◽  
pp. 2230-2238 ◽  
Author(s):  
Pavel Hobza ◽  
Paul von Ragué Schleyer

The noble gas complexes, HeBeO, NeBeO, and ArBeO, discovered calculationally by Koch and Frenking, were reexamined at various theoretical levels. The results depended strongly on the size of the basis set but were insensitive to electron correlation corrections. The MP2 association energies of BeO with the noble gases, obtained with extended basis sets, were 4·80, 4·76, and 10·12 kcal/mol, respectively. The surprising stability of HeBeO (compared to NeBeO) is due to greater charge-transfer from He to BeO (donation) as well as to charge-transfer in the reverse direction (back donation). This compensates for the larger induction energy due to the greater polarizability of neon. The basis set superposition error is very large with split-valence basis sets; improvement of s and p function descriptions strongly reduces but does not completely eliminate this error.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1810
Author(s):  
László Almásy ◽  
Attila Bende

The intermolecular interaction in difluoromethane, dichloromethane, dibromomethane, and diiodomethane dimers has been investigated using high level quantum chemical methods. The potential energy curve of intermolecular interaction along the C⋯C bond distance obtained using the coupled-cluster theory with singles, doubles, and perturbative triples excitations CCSD(T) were compared with values given by the same method, but applying the local (LCCSD(T)) and the explicitly correlated (CCSD(T)-F12) approximations. The accuracy of other theoretical methods—Hartree–Fock (HF), second order Møller–Plesset perturbation (MP2), and dispersion corrected DFT theory—were also presented. In the case of MP2 level, the canonical and the local-correlation cases combined with the density-fitting technique (DF-LMP2)theories were considered, while for the dispersion-corrected DFT, the empirically-corrected BLYP-D and the M06-2Xexchange-correlation functionals were applied. In all cases, the aug-cc-pVTZ basis set was used, and the results were corrected for the basis set superposition error (BSSE) using the counterpoise method. For each molecular system, several dimer geometries were found, and their mutual orientations were compared with the nearest neighbor orientations obtained in recent neutron scattering studies. The nature of the intermolecular interaction energy was discussed.


Sign in / Sign up

Export Citation Format

Share Document