INTERACTION OF EMODIN WITH DNA BASES: A DENSITY FUNCTIONAL THEORY

2010 ◽  
Vol 09 (05) ◽  
pp. 875-888 ◽  
Author(s):  
SIAVASH RIAHI ◽  
SOLMAZ EYNOLLAHI ◽  
MOHAMMAD REZA GANJALI

In this study, we present work on the physicochemical interaction between the anticancer drug molecule Emodin (ED) and DNA. Comprehending the physicochemical properties of this drug besides the mechanism by which it interacts with DNA should eventually permit the rational design of novel anticancer or antiviral drugs. The final purpose is the clarification of this novel class of drugs as potential pharmaceutical agents. The properties of the isolated intercalator ED and its stacking interactions with adenine⋯thymine (AT) and guanine⋯cytosine (GC) (nucleic acid base pairs) in face-to-face and face-to-back models were studied by means of the density functional tightbinding (DFTB) method. This method was an approximate version of the density functional theory (DFT) method and it includes London dispersion energy. The molecular modeling of the complex formed between ED and DNA indicated that this complex was capable of contributing to the formation of a constant intercalation site. The results exhibit that ED changes affect DNA structure with reference to bond lengths, bond angles, torsion angles, and charges.

2021 ◽  
Author(s):  
Agnieszka Kącka-Zych ◽  
Radomir Jasinski

Conversion of N-trialkylsilyloxy nitronates into bicyclic isoxazoline derivatives has been explored using Density Functional Theory (DFT) method within the context of the Molecular Electron Density Theory (MEDT) at the B97XD(PCM)/6-311G(d,p)...


RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 31968-31975 ◽  
Author(s):  
Shuai Zhao ◽  
Liguo Gao ◽  
Chunfeng Lan ◽  
Shyam S. Pandey ◽  
Shuzi Hayase ◽  
...  

In this work, we present a detailed first-principles investigation on the stoichiometric and oxygen-deficient structures of double perovskites, Sr2BMoO6 (B = Mg, Co and Ni), using the density functional theory (DFT) method.


2020 ◽  
Author(s):  
Saeedeh Mohammadi ◽  
Mohammad Esmailpour ◽  
Mina Mohammadi

Abstract This paper is a new step in helping the treatment of coronavirus by improving the performance of chloroquine drug. For this purpose, we propose a complex of chloroquine drug with graphene nanoribbon (GNR) scheme. We compute the structural and electrical properties and absorption of chloroquine (C18H26ClN3) and GNR complex using the density functional theory (DFT) method. By creating a drug and GNR complex, the density of states of electrons increases and the energy gap decreases compared to the chloroquine. Also, using absorption calculations and spectrums such as infrared and UV-Vis spectra, we showed that GNR is a suitable structure for creating chloroquine drug complex. Our results show that the dipole moment, global softness and electrophilicity for the drug complex increases compared to the non-complex state. Our calculations can be useful for increasing performance and reducing the side effects of chloroquine, and thus can be effective in treating coronavirus.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ali I. Ismail

Ibrutinib, a Bruton’s tyrosine kinase that plays an essential role in the B-cell development and cancer cells, has been recently approved to treat chronic, lymphocytic, and other types of leukemia. This study focused on investigating ibrutinib by its electronic transitions, vibrational frequencies, and electrospray mass spectra. The experimental peaks for electronic spectrum were found at 248.0 and 281.0 nm, whereas the νC = 0 stretching frequency was found at 1652.4 and 1639.19 cm−1. These experimental properties were compared with the corresponding theoretical calculations in which density functional theory was applied. The optimized structure was obtained with the calculations using a hybrid function (B3LYP) and high-level basis sets [6-311G++(d,p)]. Most of the calculated vibrational frequencies showed a relatively good agreement with the experimental ones. The electronic transitions of ibrutinib calculated using time-dependent DFT method were performed at two different solvation methods: PCM and SMD. The mass spectrum of ibrutinib, its fragments, and its isotopic pattern agreed well with the expected spectra.


2020 ◽  
Vol 7 (22) ◽  
pp. 3656-3663
Author(s):  
Kun Yuan ◽  
Peng Wang ◽  
Hui-Xue Li ◽  
Yan-Zhi Liu ◽  
Ling-Ling Lv

The photochemical deracemization mechanism of the chiral allene 3-(3,3-dimethyl-1-buten-1-ylidene)-2-piperidinone in the presence of photosensitizer thioxanthone is theoretically investigated by using a density functional theory (DFT) method.


Sign in / Sign up

Export Citation Format

Share Document