HÜCKEL TREATMENT OF PYRROLE AND PENTALENE AS A FUNCTION OF CYCLOPENTADIENYL USING LOCAL QUANTUM SIMILARITY INDEX (LQSI) AND THE TOPO-GEOMETRICAL SUPERPOSITION APPROACH (TGSA)

2012 ◽  
Vol 11 (01) ◽  
pp. 223-239 ◽  
Author(s):  
ALEJANDRO MORALES-BAYUELO ◽  
JUAN TORRES ◽  
RICARDO VIVAS-REYES

In this paper some of the characteristic of Hückel method, were exploited in order to obtain some important results, through a new technique with which it is possible to obtain non-degenerate characteristic values as in the case of pyrrole and allowing the expression of conjugated ring systems (Pentalene) as function of a system of diene monomer (Cyclopentadienyl). The local similarity index based on the Hirshfeld partitioning in the framework of conceptual Density Functional Theory (DFT), was introduced in the secular determinant of the Hückel method and was applied to Pyrrole molecule in order to express their orbital energies as a function of the orbital energy of Cyclopentadienyl, to express the energies of molecular orbitals of the Cyclopentadienyl as a function of Pentalene, resolved by the Hückel method and applied to Cyclopentadienyl, by means of six local similarity index: Overlap, Overlap-Interaction, Coulomb, Coulomb-Interaction, with their respective Euclidean distances, using the Topo-Geometrical Superposition Approach (TGSA) as a method of alignment, which allowed us to obtain good results in local similarity indices. This technique will permit the study of some molecular systems that differ in one atom in its molecular structure, resolving the Hückel method for the Pyrrole and Thiophene system without taking into account the considerations with its neighboring atoms. This proposed technique reduces the symmetry of fused ring systems which are Cyclopentadienyl derivatives, allowing to express the orbital energy of a diene dimmer (Pentalene) as a function of diene monomer systems, creating a tool of calculation to solve the problem of obtaining non-degenerate values in systems where the approximations in the Hückel method approximation provide degenerate values and providing a symmetry reduction technique.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Alejandro Morales-Bayuelo ◽  
Ricardo Vivas-Reyes

A theoretical study on the molecular polarization of thiophene and furan under the action of an electric field using Local Quantum Similarity Indexes (LQSI) was performed. This model is based on Hirshfeld partitioning of electron density within the framework of Density Functional Theory (DFT). Six local similarity indexes were used: overlap, overlap-interaction, coulomb, coulomb-interaction, Euclidian distances of overlap, and Euclidean distances of coulomb. In addition Topo-Geometrical Superposition Algorithm (TGSA) was used as a method of alignment. This method provides a straightforward procedure to solve the problem of molecular relative orientation. It provides a tool to evaluate molecular quantum similarity, enabling the study of structural systems, which differ in only one atom such as thiophene and furan (point group C2v) and cyclopentadienyl molecule (point group D5h). Additionally, this model can contribute to the interpretation of chemical bonds, and molecular interactions in the framework of the solvent effect theory.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ranita Pal ◽  
Pratim Kumar Chattaraj

The scientific community is engrossed in the thought of a probable solution to the future energy crisis keeping in mind a better environment-friendly alternative. Although there are many such alternatives, the green hydrogen energy has occupied most of the brilliant minds due to its abundance and numerous production resources. For the advancement of hydrogen economy, Government agencies are funding pertinent research projects. There is an avalanche of molecular systems which are studied by several chemists for storing atomic and molecular hydrogens. The present review on molecular hydrogen storage focuses on all-metal and nonmetal aromatic clusters. In addition to the effect of aromaticity on hydrogen trapping potential of different molecular moieties, the importance of using the conceptual density functional theory based reactivity descriptors is also highlighted. Investigations from our group have been revealing the fact that several aromatic metal clusters, metal doped nonmetal clusters as well as pure nonmetal clusters can serve as potential molecular hydrogen trapping agents. Reported systems include N4Li2, N6Ca2 clusters, Mgn, and Can (n = 8–10) cage-like moieties, B12N12 clathrate, transition metal doped ethylene complexes, M3+ (M = Li, Na) ions, E3-M2 (E = Be, Mg, Al; M = Li, Na, K) clusters, Li3Al4− ions, Li decorated star-like molecules, BxLiy (x = 3–6; y = 1, 2), Li-doped annular forms, Li-doped borazine derivatives, C12N12 clusters (N4C3H)6Li6 and associated 3-D functional material, cucurbiturils, lithium–phosphorus double-helices. Ni bound C12N12 moieties are also reported recently.


Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

This work presents the results of a computational study of the chemical reactivity and bioactivity properties of the members of the Theopapuamides A-D family of marine peptides by making use of our own proposed methodology named Computational Peptidology (CP) that has been successfully considered in previous studies of this kind of molecular systems. CP allowed for the determination of the global and local descriptors that come from Conceptual Density Functional Theory (CDFT) that can give an idea of the chemical reactivity properties of the marine natural products under study which are already known to be related to their bioactivity. At the same time, the validity of the procedure based on the adoption of the KID (Koopmans in DFT) technique as well as the MN12SX/Def2TZVP/H2O model chemistry has been successfully verified. Together with several Chemoinformatic tools that can be used for the improvement of process of Virtual Screening, some additional properties of these marine peptides were identified related to their ability to behave as useful drugs. With the further object of analyzing their bioactivity some parameters of usefulness for future QSAR studies, their predicted biological targets and the the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) parameters related to the Theopapuamides A-D pharmacokinetics are also reported.


2021 ◽  
Vol 9 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

This research presents the outcomes of a computational determination of the chemical reactivity and bioactivity properties of two plant cyclopeptides isolated from Rosaceae through the consideration of Computational Peptidology (CP), a protocol employed previously in the research of similar molecular systems. CP allows the prediction of the global and local descriptors that are the integral foundations of Conceptual Density Functional Theory (CDFT) and which could help in getting in the understanding of the chemical reactivity properties of the two plant cyclopeptides under study, hoping that they could be related to their bioactivity. The methodology based on the Koopmans in DFT (KID) approach and the MN12SX/Def2TZVP/H2O model chemistry has been successfully validated. Various Chemoinformatics tools have been used to improve the process of virtual screening, thus identifying some additional properties of these two plant cyclopeptides connected to their ability to behave as potentially useful drugs. With the further objective of analyzing their bioactivity, the CP protocol is complemented with the estimation of some useful parameters related to pharmacokinetics, their predicted biological targets, and the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) parameters related to the bioavailability of the two plant cyclopeptides under study are also reported.


2019 ◽  
Vol 17 (1) ◽  
pp. 1133-1139 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

AbstractThe chemical structures and molecular reactivities of the Amatoxin group of fungi-derived peptides have been determined by means of the consideration of a model chemistry that has been previously validated as well-behaved for our purposes. The reactivity descriptors were calculated on the basis of a methodological framework built around the concepts that are the outcome of the so called Conceptual Density Functional Theory (CDFT). This procedure in connection with the different Fukui functions allowed to identify the chemically active regions within the molecules. By considering a simple protocol designed by our research group for the estimation of the pKa of peptides through the information coming from the chemical hardness, these property has been established for the different molecular systems explored in this research. The information reported through this work could be of interest for medicinal chemistry researchers in using this knowledge for the design of new medicines based on the studied peptides or as a help for the understanding of the toxicity mechanisms exerted by them.


2020 ◽  
Author(s):  
Denis Artiukhin ◽  
Patrick Eschenbach ◽  
Johannes Neugebauer

We present a computational analysis of the asymmetry in reaction center models of photosystem I, photosystem II, and bacteria from <i>Synechococcus elongatus</i>, <i>Thermococcus vulcanus</i>, and <i>Rhodobacter sphaeroides</i>, respectively. The recently developed FDE-diab methodology [J. Chem. Phys., 148 (2018), 214104] allowed us to effectively avoid the spin-density overdelocalization error characteristic for standard Kohn–Sham Density Functional Theory and to reliably calculate spin-density distributions and electronic couplings for a number of molecular systems ranging from dimeric models in vacuum to large protein including up to about 2000 atoms. The calculated spin densities showed a good agreement with available experimental results and were used to validate reaction center models reported in the literature. We demonstrated that the applied theoretical approach is very sensitive to changes in molecular structures and relative orientation of molecules. This makes FDE-diab a valuable tool for electronic structure calculations of large photosynthetic models effectively complementing the existing experimental techniques.


2019 ◽  
Author(s):  
Brandon B. Bizzarro ◽  
Colin K. Egan ◽  
Francesco Paesani

<div> <div> <div> <p>Interaction energies of halide-water dimers, X<sup>-</sup>(H<sub>2</sub>O), and trimers, X<sup>-</sup>(H<sub>2</sub>O)<sub>2</sub>, with X = F, Cl, Br, and I, are investigated using various many-body models and exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. Analysis of the results obtained with the many-body models demonstrates the need to capture important short-range interactions in the regime of large inter-molecular orbital overlap, such as charge transfer and charge penetration. Failure to reproduce these effects can lead to large deviations relative to reference data calculated at the coupled cluster level of theory. Decompositions of interaction energies carried out with the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method demonstrate that permanent and inductive electrostatic energies are accurately reproduced by all classes of XC functionals (from generalized gradient corrected (GGA) to hybrid and range-separated functionals), while significant variance is found for charge transfer energies predicted by different XC functionals. Since GGA and hybrid XC functionals predict the most and least attractive charge transfer energies, respectively, the large variance is likely due to the delocalization error. In this scenario, the hybrid XC functionals are then expected to provide the most accurate charge transfer energies. The sum of Pauli repulsion and dispersion energies are the most varied among the XC functionals, but it is found that a correspondence between the interaction energy and the ALMO EDA total frozen energy may be used to determine accurate estimates for these contributions. </p> </div> </div> </div>


2020 ◽  
Vol 17 ◽  
Author(s):  
Sangeeta Srivastava ◽  
Nadeem Ahmad Ansari ◽  
Sadaf Aleem

: Gallic acid is abundantly found in amla (Phyllanthus emblica), a deciduous of the family phyllanthaceae. Gallic acid, the major constituent of the plant was methylated to 3,4,5 trimethoxy gallic acid, which then underwent steglich esterification first with paracetamol and then with 4-hydroxy acetophenone to yield 4-acetamidophenyl 3,4,5-trimethoxybenzoate and 4-acetyl phenyl 3,4,5-trimethoxybenzoate “respectively”. 1H NMR, 13C NMR, UV, FT-IR and mass spectroscopy were used to characterize the synthesized compounds. Density functional theory (B3YLP) using 6-31G (d,p) basis set have been used for quantum chemical calculations. AIM (Atom in molecule) approach depicted weak molecular interactions within the molecules whereas the reactive site and reactivity within the molecule were examined by global and local reactivity descriptors. The HOMO and LUMO energies and frontier orbital energy gap were calculated by time dependant DFT approach using IEFPCM model. Small value for HOMO–LUMO energy gap indicated that easier charge transfer occurs within compound 4. The nucleophilic and electrophilic reactivity were determined by MEP (molecular electrostatic potential) experiment. Polarizability, dipole moment, and first hyperpolarizability values were calculated to depict the NLO (nonlinear optical) property of both the synthesized compounds. The antimicrobial activity was also carried out and broad spectrum antibacterial activity against several strains of bacteria and certain unicellular fungi were exhibited by synthesized compound 3.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 328
Author(s):  
Raquel Álvarez-Vidaurre ◽  
Alfonso Castiñeiras ◽  
Antonio Frontera ◽  
Isabel García-Santos ◽  
Diego M. Gil ◽  
...  

This work deals with the preparation of pyridine-3-carbohydrazide (isoniazid, inh) cocrystals with two α-hydroxycarboxylic acids. The interaction of glycolic acid (H2ga) or d,l-mandelic acid (H2ma) resulted in the formation of cocrystals or salts of composition (inh)·(H2ga) (1) and [Hinh]+[Hma]–·(H2ma) (2) when reacted with isoniazid. An N′-(propan-2-ylidene)isonicotinic hydrazide hemihydrate, (pinh)·1/2(H2O) (3), was also prepared by condensation of isoniazid with acetone in the presence of glycolic acid. These prepared compounds were well characterized by elemental analysis, and spectroscopic methods, and their three-dimensional molecular structure was determined by single crystal X-ray crystallography. Hydrogen bonds involving the carboxylic acid occur consistently with the pyridine ring N atom of the isoniazid and its derivatives. The remaining hydrogen-bonding sites on the isoniazid backbone vary based on the steric influences of the derivative group. These are contrasted in each of the molecular systems. Finally, Hirshfeld surface analysis and Density-functional theory (DFT) calculations (including NCIplot and QTAIM analyses) have been performed to further characterize and rationalize the non-covalent interactions.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3221
Author(s):  
Annalisa Paolone ◽  
Sergio Brutti

The electrochemical stability windows (ESW) of selected ionic liquids have been calculated by comparing different computational approaches previously suggested in the literature. The molecular systems under study are based on di-alkyl imidazolium and tetra-alkyl ammonium cations coupled with two different imide anions (namely, bis-fluorosulfonyl imide and bis-trifluoromethyl sulfonyl imide), for which an experimental investigation of the ESW is available. Thermodynamic oxidation and reduction potentials have here been estimated by different models based on calculations either on single ions or on ionic couples. Various Density Functional Theory (DFT) functionals (MP2, B3LYP, B3LYP including a polarizable medium and empirical dispersion forces) were exploited. Both vertical and adiabatic transitions between the starting states and the oxidized or reduced states were considered. The approach based on calculations on ionic couples is not able to reproduce the experimental data, whatever the used DFT functional. The best quantitative agreement is obtained by calculations on single ions when the MP2 functional in vacuum is considered and the transitions between differently charged states are vertical (purely electronic without the relaxation of the structure). The B3LYP functional underestimates the ESW. The inclusion of a polar medium excessively widens the ESW, while a large shrinkage of the ESW is obtained by adopting an adiabatic transition scheme instead of a vertical transition one.


Sign in / Sign up

Export Citation Format

Share Document