OXIDATION MECHANISM OF THE BUTADIYNYL RADICAL, C4H: ANALOGUE OF C2H OR NOT?

2013 ◽  
Vol 12 (06) ◽  
pp. 1340002
Author(s):  
WEI-WEI ZHU ◽  
SHAO-WEN ZHANG ◽  
YI-HONG DING

Reactions of the carbon-chain radicals are of great importance in the combustion and astrophysical processes. The kinetics of the butadiynyl radical, C 4 H , has received recent attention. While there has been sufficient knowledge concerning the oxidation of the ethynyl radical, C 2 H , oxidation of the higher even-numbered members C 2n H (n > 1) is hardly known. In this paper, to enrich the C 4 H -chemistry, we report the first study of the oxidation mechanism of C 4 H . At the CCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G(d,p)+ZPVE level, the potential energy surface (PES) survey is presented covering various product channels P1( CO + HC 3 O ) (-152.7 kcal/mol), P2( C 3 H + CO 2) (-117.9), P3( HCO + C 3 O ) (-108.5), P4( HC 4 O +3 O ) (-45.2), and P5( OH + C 4 O ) (-33.2) accompanied by the master equation rate constant calculations. Despite the similarity in the PES, the kinetics of C 4 H +3 O 2 differs dramatically from that of the analogous C 2 H +3 O 2 reaction. For the C 4 H +3 O 2 reaction, the O -abstraction product P4( HC 4 O +3 O ) is almost the exclusive product, whereas the lowest C , O -exchange product P1( CO + HC 3 O ) and other products have little importance. By contrast, the C 2 H +3 O 2 reaction favors the C , O -exchange product HCO + CO . Being overall barrierless and mainly associated with the molecular → atomic oxygen conversion, the C 4 H +3 O 2 reaction should play an important role in the soot formation and interstellar chemistry where C 4 H is involved.

2021 ◽  
Vol 23 (10) ◽  
pp. 6141-6153
Author(s):  
Jianwei Cao ◽  
Yanan Wu ◽  
Haitao Ma ◽  
Zhitao Shen ◽  
Wensheng Bian

Quantum dynamics and ring polymer molecular dynamics calculations reveal interesting dynamical and kinetic behaviors of an endothermic complex-forming reaction.


2014 ◽  
Vol 79 (7) ◽  
pp. 881-895 ◽  
Author(s):  
Xiaojie Bi ◽  
Maoyu Xiao ◽  
Xinqi Qiao ◽  
Chia-Fon Lee ◽  
Liu Yu

Effects of initial ambient temperatures on combustion and soot emission characteristics of diesel fuel were investigated through experiment conducted in optical constant volume chamber and simulation using phenomenological soot model. There are four difference initial ambient temperatures adopted in our research: 1000 K, 900 K, 800 K and 700 K. In order to obtain a better prediction of soot behavior, phenomenological soot model was revised to take into account the soot oxidation feedback on soot number density and good agreement was observed in the comparison of soot measurement and prediction. Results indicated that ignition delay prolonged with the decrease of initial ambient temperature. The heat release rate demonstrated the transition from mixing controlled combustion at high ambient temperature to premixed combustion mode at low ambient temperature. At lower ambient temperature, soot formation and oxidation mechanism were both suppressed. But finally soot mass concentration reduced with decreasing initial ambient temperature. Although the drop in ambient temperature did not cool the mean in-cylinder temperature during the combustion, it did shrink the total area of local high equivalence ratio, in which soot usually generated fast. At 700 K initial ambient temperature, soot emissions were almost negligible, which indicates that sootless combustion might be achieved at super low initial temperature operation conditions.


2019 ◽  
Vol 21 (3) ◽  
pp. 1408-1416 ◽  
Author(s):  
Junxiang Zuo ◽  
Qixin Chen ◽  
Xixi Hu ◽  
Hua Guo ◽  
Daiqian Xie

A global potential energy surface for the O(3P) + C2H2reaction is developed and the quasi-classical trajectory study on the potential energy surface reproduce the rate coefficient and product branching ratio.


2006 ◽  
Vol 24 (11) ◽  
pp. 2823-2839 ◽  
Author(s):  
V. A. Yankovsky ◽  
R. O. Manuilova

Abstract. The traditional kinetics of electronically excited products of O3 and O2 photolysis is supplemented with the processes of the energy transfer between electronically-vibrationally excited levels O2(a1Δg, v) and O2(b1Σ+g, v), excited atomic oxygen O(1D), and the O2 molecules in the ground electronic state O2(X3Σg−, v). In contrast to the previous models of kinetics of O2(a1Δg) and O2 (b1Σ+g), our model takes into consideration the following basic facts: first, photolysis of O3 and O2 and the processes of energy exchange between the metastable products of photolysis involve generation of oxygen molecules on highly excited vibrational levels in all considered electronic states – b1Σ+g, a1Δg and X3Σg−; second, the absorption of solar radiation not only leads to populating the electronic states on vibrational levels with vibrational quantum number v equal to 0 – O2(b1Σ+g, v=0) (at 762 nm) and O2(a1Δg, v=0) (at 1.27 µm), but also leads to populating the excited electronic–vibrational states O2(b1Σ+g, v=1) and O2(b1Σ+g, v=2) (at 689 nm and 629 nm). The proposed model allows one to calculate not only the vertical profiles of the O2(a1Δg, v=0) and O2(b1Σ


Sign in / Sign up

Export Citation Format

Share Document