A Forecasting Methodology Using Support Vector Regression and Dynamic Feature Selection

2006 ◽  
Vol 05 (04) ◽  
pp. 329-335 ◽  
Author(s):  
José Guajardo ◽  
Richard Weber ◽  
Jaime Miranda

Various techniques have been proposed to forecast a given time series. Models from the ARIMA family have been successfully used, as well as regression approaches based on e.g. linear, non-linear regression, neural networks, and Support Vector Regression. What makes the difference in many real-world applications, however, is not the technique but an appropriate forecasting methodology. Here, we propose such a methodology for the regression-based forecasting approach. A hybrid system is presented that iteratively selects the most relevant features and constructs the regression model optimizing its parameters dynamically. We develop a particular technique for feature selection as well as for model construction. The methodology, however, is a generic one providing the opportunity to employ alternative approaches within our framework. The application to several time series underlines its usefulness.

Author(s):  
Malek Sarhani ◽  
Abdellatif El Afia

Reliable prediction of future demand is needed to better manage and optimize supply chains. However, a difficulty of forecasting demand arises due to the fact that heterogeneous factors may affect it. Analyzing such data by using classical time series forecasting methods will fail to capture such dependency of factors. This chapter addresses these problems by examining the use of feature selection in forecasting using support vector regression while eliminating the calendar effect using X13-ARIMA-SEATS. The approach is investigated in three different case studies.


2021 ◽  
Vol 7 ◽  
pp. e732
Author(s):  
Tao Wang

Background The planning and control of wind power production rely heavily on short-term wind speed forecasting. Due to the non-linearity and non-stationarity of wind, it is difficult to carry out accurate modeling and prediction through traditional wind speed forecasting models. Methods In the paper, we combine empirical mode decomposition (EMD), feature selection (FS), support vector regression (SVR) and cross-validated lasso (LassoCV) to develop a new wind speed forecasting model, aiming to improve the prediction performance of wind speed. EMD is used to extract the intrinsic mode functions (IMFs) from the original wind speed time series to eliminate the non-stationarity in the time series. FS and SVR are combined to predict the high-frequency IMF obtained by EMD. LassoCV is used to complete the prediction of low-frequency IMF and trend. Results Data collected from two wind stations in Michigan, USA are adopted to test the proposed combined model. Experimental results show that in multi-step wind speed forecasting, compared with the classic individual and traditional EMD-based combined models, the proposed model has better prediction performance. Conclusions Through the proposed combined model, the wind speed forecast can be effectively improved.


2021 ◽  
Vol 5 (1) ◽  
pp. 46
Author(s):  
Mostafa Abotaleb ◽  
Tatiana Makarovskikh

COVID-19 is one of the biggest challenges that countries face at the present time, as infections and deaths change daily and because this pandemic has a dynamic spread. Our paper considers two tasks. The first one is to develop a system for modeling COVID-19 based on time-series models due to their accuracy in forecasting COVID-19 cases. We developed an “Epidemic. TA” system using R programming for modeling and forecasting COVID-19 cases. This system contains linear (ARIMA and Holt’s model) and non-linear (BATS, TBATS, and SIR) time-series models and neural network auto-regressive models (NNAR), which allows us to obtain the most accurate forecasts of infections, deaths, and vaccination cases. The second task is the implementation of our system to forecast the risk of the third wave of infections in the Russian Federation.


Sign in / Sign up

Export Citation Format

Share Document