Three-dimensional wavelet analysis on turbulent structure of dune wake flow

Author(s):  
Yan Zheng ◽  
Akira Rinoshika ◽  
Shun Fujimoto

The three-dimensional (3D) turbulent structure was simulated by large eddy simulation (LES), and then the numerical result was validated by PIV experiment. In order to give a detailed description of dune wake flow, the instantaneous velocity, vorticity, and pressure were decomposed into the large-, intermediate- and relatively small-scale components by 3D wavelet multi-resolution technique. To get a further understanding of coherent structure, the decomposed wavelet components were employed to calculate Q-criterion. It was found that the rollers and horse-shoe structures in the separation bubble were mainly contributed from large-scale structures and it made the most significance to the vorticity concentration. The observations of intermediate-scale horse-shoe structures indicated that the coherent structure was the combined effect of large- and intermediate-scale structures. Besides, from the visualization of 3D streamlines and pressure iso-surfaces, the separation bubble and pressure distribution are found to be dominated by large-scale structure.

2011 ◽  
Vol 673 ◽  
pp. 255-285 ◽  
Author(s):  
N. HUTCHINS ◽  
J. P. MONTY ◽  
B. GANAPATHISUBRAMANI ◽  
H. C. H. NG ◽  
I. MARUSIC

An array of surface hot-film shear-stress sensors together with a traversing hot-wire probe is used to identify the conditional structure associated with a large-scale skin-friction event in a high-Reynolds-number turbulent boundary layer. It is found that the large-scale skin-friction events convect at a velocity that is much faster than the local mean in the near-wall region (the convection velocity for large-scale skin-friction fluctuations is found to be close to the local mean at the midpoint of the logarithmic region). Instantaneous shear-stress data indicate the presence of large-scale structures at the wall that are comparable in scale and arrangement to the superstructure events that have been previously observed to populate the logarithmic regions of turbulent boundary layers. Conditional averages of streamwise velocity computed based on a low skin-friction footprint at the wall offer a wider three-dimensional view of the average superstructure event. These events consist of highly elongated forward-leaning low-speed structures, flanked on either side by high-speed events of similar general form. An analysis of small-scale energy associated with these large-scale events reveals that the small-scale velocity fluctuations are attenuated near the wall and upstream of a low skin-friction event, while downstream and above the low skin-friction event, the fluctuations are significantly amplified. In general, it is observed that the attenuation and amplification of the small-scale energy seems to approximately align with large-scale regions of streamwise acceleration and deceleration, respectively. Further conditional averaging based on streamwise skin-friction gradients confirms this observation. A conditioning scheme to detect the presence of meandering large-scale structures is also proposed. The large-scale meandering events are shown to be a possible source of the strong streamwise velocity gradients, and as such play a significant role in modulating the small-scale motions.


Author(s):  
A. RINOSHIKA ◽  
Y. ZHENG ◽  
E. SHISHIDO

The three-dimensional orthogonal wavelet multi-resolution technique was applied to analyze flow structures of various scales around an externally mounted vehicle mirror. Firstly, the three-dimensional flow of mirror wake was numerically analyzed at a Reynolds number of 105 by using the large-eddy simulation (LES). Then the instantaneous velocity and vorticity were decomposed into the large-, intermediate- and relatively small-scale components by the wavelet multi-resolution technique. It was found that a three-dimensional large-scale vertical vortex dominates the mirror wake flow and makes a main contribution to vorticity concentration. Some intermediate- and relatively small-scale vortices were extracted from the LES and were clearly identifiable.


2014 ◽  
Vol 746 ◽  
Author(s):  
K. M. Talluru ◽  
R. Baidya ◽  
N. Hutchins ◽  
I. Marusic

AbstractA combination of cross-wire probes with an array of flush-mounted skin-friction sensors are used to study the three-dimensional conditional organisation of large-scale structures in a high-Reynolds-number turbulent boundary layer. Previous studies have documented the amplitude modulation of small-scale motions in response to conditionally averaged large-scale events, but the data are largely restricted to the streamwise component of velocity alone. Here, we report results based on all three components of velocity and find that the small-scale spanwise and wall-normal fluctuations ($v$ and $w$) and the instantaneous Reynolds shear stress ($-{uw}$) are modulated in a very similar manner to that previously noted for the streamwise fluctuations ($u$). The envelope of the small scale fluctuations for all velocity components is well described by the large-scale component of the $u$ fluctuation. These results also confirm the conditional existence of roll modes associated with the very large-scale or ‘superstructure’ motions.


2019 ◽  
Vol 878 ◽  
pp. 306-323 ◽  
Author(s):  
Bernat Font Garcia ◽  
Gabriel D. Weymouth ◽  
Vinh-Tan Nguyen ◽  
Owen R. Tutty

Turbulent flow evolution and energy cascades are significantly different in two-dimensional (2-D) and three-dimensional (3-D) flows. Studies have investigated these differences in obstacle-free turbulent flows, but solid boundaries have an important impact on the cross-over from 3-D to 2-D turbulence dynamics. In this work, we investigate the span effect on the turbulence nature of flow past a circular cylinder at $Re=10\,000$. It is found that even for highly anisotropic geometries, 3-D small-scale structures detach from the walls. Additionally, the natural large-scale rotation of the Kármán vortices rapidly two-dimensionalise those structures if the span is 50 % of the diameter or less. We show this is linked to the span being shorter than the Mode B instability wavelength. The conflicting 3-D small-scale structures and 2-D Kármán vortices result in 2-D and 3-D turbulence dynamics which can coexist at certain locations of the wake depending on the domain geometric anisotropy.


Author(s):  
Lin Dong ◽  
Akira Rinoshika

This paper proposes vehicle door mirrors with a tip shape and ditch to reduce the aerodynamic drag. The mean drag coefficients Cd of various mirror models were first measured using load cells within a 103–105 Reynolds number range in a wind tunnel. The Cd of controlled mirrors with different ditch widths remained constant at approximately 0.75 and was lower than that of conventional mirrors. Using a large eddy simulation (LES), the 3D flow structures around modified and conventional mirrors were numerically analyzed at a Reynolds number of 2.8 × 105. Based on a three-dimensional orthogonal wavelet multi-resolution technique, the instantaneous three-dimensional vorticity and velocity were decomposed into three wavelet levels or scales: large scale with a 62 mm central scale, intermediate scale with a 29 mm central scale, and small scale with a 16 mm central scale. This indicated that the length of the region of the vorticity iso-surfaces in an improved door mirror model as the tip ditch decreases. Because the tip ditch produced the more streamwise vortices, the large-scale spanwise vortices were suppressed. The streamwise vortices and spanwise vortices of the small- and intermediate-scale structures increased, which is mainly caused by the ditch in the tip.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


Author(s):  
A. Samson ◽  
S. Sarkar

The dynamics of separation bubble under the influence of continuous jets ejected near the semi-circular leading edge of a flat plate is presented. Two different streamwise injection angles 30° and 60° and velocity ratios 0.5 and 1 for Re = 25000 and 55000 (based on the leading-edge diameter) are considered here. The flow visualizations illustrating jet and separated layer interactions have been carried out with PIV. The objective of this study is to understand the mutual interactions of separation bubble and the injected jets. It is observed that flow separates at the blending point of semi-circular arc and flat plate. The separated shear layer is laminar up to 20% of separation length after which perturbations are amplified and grows in the second-half of the bubble leading to breakdown and reattachment. Blowing has significantly affected the bubble length and thus, turbulence generation. Instantaneous flow visualizations supports the unsteadiness and development of three-dimensional motions leading to formation of Kelvin-Helmholtz rolls and shedding of large-scale vortices due to jet and bubble interactions. In turn, it has been seen that both the spanwise and streamwise dilution of injected air is highly influenced by the separation bubble.


1999 ◽  
Vol 382 ◽  
pp. 307-329 ◽  
Author(s):  
JUDITH K. FOSS ◽  
K. B. M. Q. ZAMAN

The large- and small-scale vortical motions produced by ‘delta tabs’ in a two-stream shear layer have been studied experimentally. An increase in mixing was observed when the base of the triangular shaped tab was affixed to the trailing edge of the splitter plate and the apex was pitched at some angle with respect to the flow axis. Such an arrangement produced a pair of counter-rotating streamwise vortices. Hot-wire measurements detailed the velocity, time-averaged vorticity (Ωx) and small-scale turbulence features in the three-dimensional space downstream of the tabs. The small-scale structures, whose scale corresponds to that of the peak in the dissipation spectrum, were identified and counted using the peak-valley-counting technique. The optimal pitch angle, θ, for a single tab and the optimal spanwise spacing, S, for a multiple tab array were identified. Since the goal was to increase mixing, the optimal tab configuration was determined from two properties of the flow field: (i) the large-scale motions with the maximum Ωx, and (ii) the largest number of small-scale motions in a given time period. The peak streamwise vorticity magnitude [mid ]Ωx−max[mid ] was found to have a unique relationship with the tab pitch angle. Furthermore, for all cases examined, the overall small-scale population was found to correlate directly with [mid ]Ωx−max[mid ]. Both quantities peaked at θ≈±45°. It is interesting to note that the peak magnitude of the corresponding circulation in the cross-sectional plane occurred for θ≈±90°. For an array of tabs, the two quantities also depended on the tab spacing. An array of contiguous tabs acted as a solid deflector producing the weakest streamwise vortices and the least small-scale population. For the measurement range covered, the optimal spacing was found to be S≈1.5 tab widths.


Sign in / Sign up

Export Citation Format

Share Document