B-spline wavelet operational method for numerical solution of time-space fractional partial differential equations

Author(s):  
Zeynab Kargar ◽  
Habibollah Saeedi

In this paper, the linear B-spline scaling functions and wavelets operational matrix of fractional integration are derived. A new approach implementing the linear B-spline scaling functions and wavelets operational matrices combining with the spectral tau method is introduced for approximating the numerical solutions of time-space fractional partial differential equations with initial-boundary conditions. They are utilized to reduce the main problem to a system of algebraic equations. The uniform convergence analysis for the linear B-spline scaling functions and wavelets expansion and an efficient error estimation of the presented method are also introduced. Illustrative examples are given and numerical results are presented to demonstrate the efficiency and accuracy of the proposed method. Special attention is given to a comparison between the numerical results obtained by our new technique and those found by other known methods.

2018 ◽  
Vol 35 (6) ◽  
pp. 2349-2366 ◽  
Author(s):  
Umer Saeed ◽  
Mujeeb ur Rehman ◽  
Qamar Din

Purpose The purpose of this paper is to propose a method for solving nonlinear fractional partial differential equations on the semi-infinite domain and to get better and more accurate results. Design/methodology/approach The authors proposed a method by using the Chebyshev wavelets in conjunction with differential quadrature technique. The operational matrices for the method are derived, constructed and used for the solution of nonlinear fractional partial differential equations. Findings The operational matrices contain many zero entries, which lead to the high efficiency of the method and reasonable accuracy is achieved even with less number of grid points. The results are in good agreement with exact solutions and more accurate as compared to Haar wavelet method. Originality/value Many engineers can use the presented method for solving their nonlinear fractional models.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Weishi Yin ◽  
Fei Xu ◽  
Weipeng Zhang ◽  
Yixian Gao

This paper is devoted to finding the asymptotic expansion of solutions to fractional partial differential equations with initial conditions. A new method, the residual power series method, is proposed for time-space fractional partial differential equations, where the fractional integral and derivative are described in the sense of Riemann-Liouville integral and Caputo derivative. We apply the method to the linear and nonlinear time-space fractional Kuramoto-Sivashinsky equation with initial value and obtain asymptotic expansion of the solutions, which demonstrates the accuracy and efficiency of the method.


2018 ◽  
Vol 21 (6) ◽  
pp. 1506-1523 ◽  
Author(s):  
Fernanda Simões Patrício ◽  
Miguel Patrício ◽  
Higinio Ramos

Abstract This paper aims at obtaining a high precision numerical approximation for fractional partial differential equations. This is achieved through appropriate discretizations: firstly we consider the application of shifted Legendre or Chebyshev polynomials to get a spatial discretization, followed by a temporal discretization where we use the Implicit Euler method (although any other temporal integrator could be used). Finally, the use of an extrapolation technique is considered for improving the numerical results. In this way a very accurate solution is obtained. An algorithm is presented, and numerical results are shown to demonstrate the validity of the present technique.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Fukang Yin ◽  
Junqiang Song ◽  
Yongwen Wu ◽  
Lilun Zhang

A numerical method is presented to obtain the approximate solutions of the fractional partial differential equations (FPDEs). The basic idea of this method is to achieve the approximate solutions in a generalized expansion form of two-dimensional fractional-order Legendre functions (2D-FLFs). The operational matrices of integration and derivative for 2D-FLFs are first derived. Then, by these matrices, a system of algebraic equations is obtained from FPDEs. Hence, by solving this system, the unknown 2D-FLFs coefficients can be computed. Three examples are discussed to demonstrate the validity and applicability of the proposed method.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
S. Mockary ◽  
E. Babolian ◽  
A. R. Vahidi

Abstract In this paper, we use operational matrices of Chebyshev polynomials to solve fractional partial differential equations (FPDEs). We approximate the second partial derivative of the solution of linear FPDEs by operational matrices of shifted Chebyshev polynomials. We apply the operational matrix of integration and fractional integration to obtain approximations of (fractional) partial derivatives of the solution and the approximation of the solution. Then we substitute the operational matrix approximations in the FPDEs to obtain a system of linear algebraic equations. Finally, solving this system, we obtain the approximate solution. Numerical experiments show an exponential rate of convergence and hence the efficiency and effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document