Medical image fusion based on modified pulse coupled neural network model and kirsch operator

Author(s):  
Guofen Wang ◽  
Yongdong Huang

The medical image fusion process integrates the information of multiple source images into a single image. This fused image can provide more comprehensive information and is helpful in clinical diagnosis and treatment. In this paper, a new medical image fusion algorithm is proposed. Firstly, the original image is decomposed into a low-frequency sub-band and a series of high-frequency sub-bands by using nonsubsampled shearlet transform (NSST). For the low-frequency sub-band, kirsch operator is used to extract the directional feature maps from eight directions and novel sum-modified-Laplacian (NSML) method is used to calculate the significant information of each directional feature map, and then, combining a sigmod function and the significant information updated by gradient domain guided image filtering (GDGF), calculate the fusion weight coefficients of the directional feature maps. The fused feature map is obtained by summing the convolutions of the weight coefficients and the directional feature maps. The final fused low-frequency sub-band is obtained by the linear combination of the eight fused directional feature maps. The modified pulse coupled neural network (MPCNN) model is used to calculate the firing times of each high-frequency sub-band coefficient, and the fused high-frequency sub-bands are selected according to the firing times. Finally, the inverse NSST acts on the fused low-frequency sub-band and the fused high-frequency sub-bands to obtain the fused image. The experimental results show that the proposed medical image fusion algorithm expresses some advantages over the classical medical image fusion algorithms in objective and subjective evaluation.

2018 ◽  
Vol 7 (2.31) ◽  
pp. 165
Author(s):  
M Shyamala Devi ◽  
P Balamurugan

Image processing technology requires moreover the full image or the part of image which is to be processed from the user’s point of view like the radius of object etc. The main purpose of fusion is to diminish dissimilar error between the fused image and the input images. With respect to the medical diagnosis, the edges and outlines of the concerned objects is more important than extra information. So preserving the edge features of the image is worth for investigating the image fusion. The image with higher contrast contains more edge-like features. Here we propose a new medical image fusion scheme namely Local Energy Match NSCT based on discrete contourlet transformation, which is constructive to give the details of curve edges. It is used to progress the edge information of fused image by dropping the distortion. This transformation lead to crumbling of multimodal image addicted to finer and coarser details and finest details will be decayed into unusual resolution in dissimilar orientation. The input multimodal images namely CT and MRI images are first transformed by Non Sub sampled Contourlet Transformation (NSCT) which decomposes the image into low frequency and high frequency elements. In our system, the Low frequency coefficient of the image is fused by image averaging and Gabor filter bank algorithm. The processed High frequency coefficients of the image are fused by image averaging and gradient based fusion algorithm. Then the fused image is obtained by inverse NSCT with local energy match based coefficients. To evaluate the image fusion accuracy, Peak Signal to Noise Ratio (PSNR), Root Mean Square Error (RMSE) and Correlation Coefficient parameters are used in this work .


2020 ◽  
Vol 14 ◽  
pp. 174830262093129
Author(s):  
Zhang Zhancheng ◽  
Luo Xiaoqing ◽  
Xiong Mengyu ◽  
Wang Zhiwen ◽  
Li Kai

Medical image fusion can combine multi-modal images into an integrated higher-quality image, which can provide more comprehensive and accurate pathological information than individual image does. Traditional transform domain-based image fusion methods usually ignore the dependencies between coefficients and may lead to the inaccurate representation of source image. To improve the quality of fused image, a medical image fusion method based on the dependencies of quaternion wavelet transform coefficients is proposed. First, the source images are decomposed into low-frequency component and high-frequency component by quaternion wavelet transform. Then, a clarity evaluation index based on quaternion wavelet transform amplitude and phase is constructed and a contextual activity measure is designed. These measures are utilized to fuse the high-frequency coefficients and the choose-max fusion rule is applied to the low-frequency components. Finally, the fused image can be obtained by inverse quaternion wavelet transform. The experimental results on some brain multi-modal medical images demonstrate that the proposed method has achieved advanced fusion result.


Author(s):  
N. NAGARAJA KUMAR ◽  
T. JAYACHANDRA PRASAD ◽  
K. SATYA PRASAD

In recent times, multi-modal medical image fusion has emerged as an important medical application tool. An important goal is to fuse the multi-modal medical images from diverse imaging modalities into a single fused image. The physicians broadly utilize this for precise identification and treatment of diseases. This medical image fusion approach will help the physician perform the combined diagnosis, interventional treatment, pre-operative planning, and intra-operative guidance in various medical applications by developing the corresponding information from clinical images through different modalities. In this paper, a novel multi-modal medical image fusion method is adopted using the intelligent method. Initially, the images from two different modalities are applied with optimized Dual-Tree Complex Wavelet Transform (DT-CWT) for splitting the images into high-frequency subbands and low-frequency subbands. As an improvement to the conventional DT-CWT, the filter coefficients are optimized by the hybrid meta-heuristic algorithm named as Hybrid Beetle and Salp Swarm Optimization (HBSSO) by merging the Salp Swarm Algorithm (SSA), and Beetle Swarm Optimization (BSO). Moreover, the fusion of the source images’ high-frequency subbands was done by the optimized type-2 Fuzzy Entropy. The upper and lower membership limits are optimized by the same hybrid HBSSO. The optimized type-2 fuzzy Entropy automatically selects high-frequency coefficients. Also, the fusion of the low-frequency sub-images is performed by the Averaging approach. Further, the inverse optimized DT-CWT on the fused image sets helps to obtain the final fused medical image. The main objective of the optimized DT-CWT and optimized type-2 fuzzy Entropy is to maximize the SSIM. The experimental results confirm that the developed approach outperforms the existing fusion algorithms in diverse performance measures.


2021 ◽  
Vol 12 (4) ◽  
pp. 78-97
Author(s):  
Hassiba Talbi ◽  
Mohamed-Khireddine Kholladi

In this paper, the authors propose an algorithm of hybrid particle swarm with differential evolution (DE) operator, termed DEPSO, with the help of a multi-resolution transform named dual tree complex wavelet transform (DTCWT) to solve the problem of multimodal medical image fusion. This hybridizing approach aims to combine algorithms in a judicious manner, where the resulting algorithm will contain the positive features of these different algorithms. This new algorithm decomposes the source images into high-frequency and low-frequency coefficients by the DTCWT, then adopts the absolute maximum method to fuse high-frequency coefficients; the low-frequency coefficients are fused by a weighted average method while the weights are estimated and enhanced by an optimization method to gain optimal results. The authors demonstrate by the experiments that this algorithm, besides its simplicity, provides a robust and efficient way to fuse multimodal medical images compared to existing wavelet transform-based image fusion algorithms.


2018 ◽  
Vol 11 (4) ◽  
pp. 1937-1946
Author(s):  
Nancy Mehta ◽  
Sumit Budhiraja

Multimodal medical image fusion aims at minimizing the redundancy and collecting the relevant information using the input images acquired from different medical sensors. The main goal is to produce a single fused image having more information and has higher efficiency for medical applications. In this paper modified fusion method has been proposed in which NSCT decomposition is used to decompose the wavelet coefficients obtained after wavelet decomposition. NSCT being multidirectional,shift invariant transform provide better results.Guided filter has been used for the fusion of high frequency coefficients on account of its edge preserving property. Phase congruency is used for the fusion of low frequency coefficients due to its insensitivity to illumination contrast hence making it suitable for medical images. The simulated results show that the proposed technique shows better performance in terms of entropy, structural similarity index, Piella metric. The fusion response of the proposed technique is also compared with other fusion approaches; proving the effectiveness of the obtained fusion results.


2017 ◽  
pp. 711-723
Author(s):  
Vikrant Bhateja ◽  
Abhinav Krishn ◽  
Himanshi Patel ◽  
Akanksha Sahu

Medical image fusion facilitates the retrieval of complementary information from medical images and has been employed diversely for computer-aided diagnosis of life threatening diseases. Fusion has been performed using various approaches such as Pyramidal, Multi-resolution, multi-scale etc. Each and every approach of fusion depicts only a particular feature (i.e. the information content or the structural properties of an image). Therefore, this paper presents a comparative analysis and evaluation of multi-modal medical image fusion methodologies employing wavelet as a multi-resolution approach and ridgelet as a multi-scale approach. The current work tends to highlight upon the utility of these approaches according to the requirement of features in the fused image. Principal Component Analysis (PCA) based fusion algorithm has been employed in both ridgelet and wavelet domains for purpose of minimisation of redundancies. Simulations have been performed for different sets of MR and CT-scan images taken from ‘The Whole Brain Atlas'. The performance evaluation has been carried out using different parameters of image quality evaluation like: Entropy (E), Fusion Factor (FF), Structural Similarity Index (SSIM) and Edge Strength (QFAB). The outcome of this analysis highlights the trade-off between the retrieval of information content and the morphological details in finally fused image in wavelet and ridgelet domains.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Zhaisheng Ding ◽  
Dongming Zhou ◽  
Rencan Nie ◽  
Ruichao Hou ◽  
Yanyu Liu

Computed tomography (CT) images show structural features, while magnetic resonance imaging (MRI) images represent brain tissue anatomy but do not contain any functional information. How to effectively combine the images of the two modes has become a research challenge. In this paper, a new framework for medical image fusion is proposed which combines convolutional neural networks (CNNs) and non-subsampled shearlet transform (NSST) to simultaneously cover the advantages of them both. This method effectively retains the functional information of the CT image and reduces the loss of brain structure information and spatial distortion of the MRI image. In our fusion framework, the initial weights integrate the pixel activity information from two source images that is generated by a dual-branch convolutional network and is decomposed by NSST. Firstly, the NSST is performed on the source images and the initial weights to obtain their low-frequency and high-frequency coefficients. Then, the first component of the low-frequency coefficients is fused by a novel fusion strategy, which simultaneously copes with two key issues in the fusion processing which are named energy conservation and detail extraction. The second component of the low-frequency coefficients is fused by the strategy that is designed according to the spatial frequency of the weight map. Moreover, the high-frequency coefficients are fused by the high-frequency components of the initial weight. Finally, the final image is reconstructed by the inverse NSST. The effectiveness of the proposed method is verified using pairs of multimodality images, and the sufficient experiments indicate that our method performs well especially for medical image fusion.


2010 ◽  
Vol 07 (02) ◽  
pp. 99-107 ◽  
Author(s):  
NEMIR AL-AZZAWI ◽  
WAN AHMED K. WAN ABDULLAH

Medical image fusion has been used to derive useful information from multimodality medical image data. This paper presents a dual-tree complex contourlet transform (DT-CCT) based approach for the fusion of magnetic resonance image (MRI) and computed tomography (CT) image. The objective of the fusion of an MRI and a CT image of the same organ is to obtain a single image containing as much information as possible about that organ for diagnosis. The limitation of directional information of dual-tree complex wavelet (DT-CWT) is rectified in DT-CCT by incorporating directional filter banks (DFB) into the DT-CWT. To improve the fused image quality, we propose a new method for fusion rules based on the principle component analysis (PCA) which depend on frequency component of DT-CCT coefficients (contourlet domain). For low frequency coefficients, PCA method is adopted and for high frequency coefficients, the salient features are picked up based on local energy. The final fusion image is obtained by directly applying inverse dual tree complex contourlet transform (IDT-CCT) to the fused low and high frequency coefficients. The DT-CCT produces images with improved contours and textures, while the property of shift invariance is retained. The experimental results showed that the proposed method produces fixed image with extensive features on multimodality.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jingming Xia ◽  
Yiming Chen ◽  
Aiyue Chen ◽  
Yicai Chen

The clinical assistant diagnosis has a high requirement for the visual effect of medical images. However, the low frequency subband coefficients obtained by the NSCT decomposition are not sparse, which is not conducive to maintaining the details of the source image. To solve these problems, a medical image fusion algorithm combined with sparse representation and pulse coupling neural network is proposed. First, the source image is decomposed into low and high frequency subband coefficients by NSCT transform. Secondly, the K singular value decomposition (K-SVD) method is used to train the low frequency subband coefficients to get the overcomplete dictionary D, and the orthogonal matching pursuit (OMP) algorithm is used to sparse the low frequency subband coefficients to complete the fusion of the low frequency subband sparse coefficients. Then, the pulse coupling neural network (PCNN) is excited by the spatial frequency of the high frequency subband coefficients, and the fusion coefficients of the high frequency subband coefficients are selected according to the number of ignition times. Finally, the fusion medical image is reconstructed by NSCT inverter. The experimental results and analysis show that the algorithm of gray and color image fusion is about 34% and 10% higher than the contrast algorithm in the edge information transfer factor QAB/F index, and the performance of the fusion result is better than the existing algorithm.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Hui Huang ◽  
Xi’an Feng ◽  
Jionghui Jiang

According to the pros and cons of contourlet transform and multimodality medical imaging, here we propose a novel image fusion algorithm that combines nonlinear approximation of contourlet transform with image regional features. The most important coefficient bands of the contourlet sparse matrix are retained by nonlinear approximation. Low-frequency and high-frequency regional features are also elaborated to fuse medical images. The results strongly suggested that the proposed algorithm could improve the visual effects of medical image fusion and image quality, image denoising, and enhancement.


Sign in / Sign up

Export Citation Format

Share Document