MIXED-STATE ENTANGLEMENT IN THE LIGHT OF PURE-STATE ENTANGLEMENT CONSTRAINED BY SUPERSELECTION RULES

2005 ◽  
Vol 03 (supp01) ◽  
pp. 145-153
Author(s):  
STEPHEN D. BARTLETT ◽  
HOWARD. M. WISEMAN ◽  
ROBERT W. SPEKKENS ◽  
ANDREW C. DOHERTY

We show that the classification of bi-partite pure entangled states when local quantum operations are restricted, e.g., constrained by local superselection rules, yields a structure that is analogous in many respects to that of mixed-state entanglement, including such exotic phenomena as bound entanglement and activation. This analogy aids in resolving several conceptual puzzles in the study of entanglement under restricted operations. Specifically, we demonstrate that several types of quantum optical states that possess confusing entanglement properties are analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted operations can be much simpler than for mixed state entanglement. For instance, in the case of local Abelian superselection rules all questions concerning distillability can be resolved.

Author(s):  
Francesco Ticozzi ◽  
Lorenza Viola

We provide a solution to the problem of determining whether a target pure state can be asymptotically prepared using dissipative Markovian dynamics under fixed locality constraints. Besides recovering existing results for a large class of physically relevant entangled states, our approach has the advantage of providing an explicit stabilization test solely based on the input state and constraints of the problem. Connections with the formalism of frustration-free parent Hamiltonians are discussed, as well as control implementations in terms of a switching output-feedback law.


2010 ◽  
Vol 43 (5) ◽  
pp. 055303 ◽  
Author(s):  
Shuo Cheng ◽  
Junli Li ◽  
Cong-Feng Qiao
Keyword(s):  

2012 ◽  
Vol 12 (3&4) ◽  
pp. 253-261
Author(s):  
Satyabrata Adhikari ◽  
Indranil Chakrabarty ◽  
Pankaj Agrawal

In a realistic situation, the secret sharing of classical or quantum information will involve the transmission of this information through noisy channels. We consider a three qubit pure state. This state becomes a mixed-state when the qubits are distributed over noisy channels. We focus on a specific noisy channel, the phase-damping channel. We propose a protocol for secret sharing of classical information with this and related noisy channels. This protocol can also be thought of as cooperative superdense coding. We also discuss other noisy channels to examine the possibility of secret sharing of classical information.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Castro-Ruiz ◽  
Flaminia Giacomini ◽  
Alessio Belenchia ◽  
Časlav Brukner

AbstractThe standard formulation of quantum theory relies on a fixed space-time metric determining the localisation and causal order of events. In general relativity, the metric is influenced by matter, and is expected to become indefinite when matter behaves quantum mechanically. Here, we develop a framework to operationally define events and their localisation with respect to a quantum clock reference frame, also in the presence of gravitating quantum systems. We find that, when clocks interact gravitationally, the time localisability of events becomes relative, depending on the reference frame. This relativity is a signature of an indefinite metric, where events can occur in an indefinite causal order. Even if the metric is indefinite, for any event we can find a reference frame where local quantum operations take their standard unitary dilation form. This form is preserved when changing clock reference frames, yielding physics covariant with respect to quantum reference frame transformations.


2002 ◽  
Vol 65 (5) ◽  
Author(s):  
Somshubhro Bandyopadhyay ◽  
Vwani Roychowdhury ◽  
Ujjwal Sen
Keyword(s):  

Author(s):  
STEPHEN D. BARTLETT ◽  
HOWARD. M. WISEMAN ◽  
ROBERT W. SPEKKENS ◽  
ANDREW C. DOHERTY
Keyword(s):  

2014 ◽  
Vol 12 (03) ◽  
pp. 1450011 ◽  
Author(s):  
Pengfei Xing ◽  
Yimin Liu ◽  
Chuanmei Xie ◽  
Xiansong Liu ◽  
Zhanjun Zhang

Two three-party schemes are put forward for sharing quantum operations on a remote qutrit with local operation and classical communication as well as shared entanglements. The first scheme uses a two-qutrit and three-qutrit non-maximally entangled states as quantum channels, while the second replaces the three-qutrit non-maximally entangled state with a two-qutrit. Both schemes are treated and compared from the four aspects of quantum and classical resource consumption, necessary-operation complexity, success probability and efficiency. It is found that the latter is overall more optimal than the former as far as a restricted set of operations is concerned. In addition, comparisons of both schemes with other four relevant ones are also made to show their two features, including degree generalization and channel-state generalization. Furthermore, some concrete discussions on both schemes are made to expose their important features of security, symmetry and experimental feasibility. Particularly, it is revealed that the success probabilities and intrinsic efficiencies in both schemes are completely determined by the shared entanglement.


Sign in / Sign up

Export Citation Format

Share Document