quantum clocks
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Philipp A. Höhn ◽  
Alexander R. H. Smith ◽  
Maximilian P. E. Lock

We have previously shown that three approaches to relational quantum dynamics—relational Dirac observables, the Page-Wootters formalism and quantum deparametrizations—are equivalent. Here we show that this “trinity” of relational quantum dynamics holds in relativistic settings per frequency superselection sector. Time according to a clock subsystem is defined via a positive operator-valued measure (POVM) that is covariant with respect to the group generated by its (quadratic) Hamiltonian. This differs from the usual choice of a self-adjoint clock observable conjugate to the clock momentum. It also resolves Kuchař's criticism that the Page-Wootters formalism yields incorrect localization probabilities for the relativistic particle when conditioning on a Minkowski time operator. We show that conditioning instead on the covariant clock POVM results in a Newton-Wigner type localization probability commonly used in relativistic quantum mechanics. By establishing the equivalence mentioned above, we also assign a consistent conditional-probability interpretation to relational observables and deparametrizations. Finally, we expand a recent method of changing temporal reference frames, and show how to transform states and observables frequency-sector-wise. We use this method to discuss an indirect clock self-reference effect and explore the state and temporal frame-dependence of the task of comparing and synchronizing different quantum clocks.



2020 ◽  
Vol 22 (12) ◽  
pp. 123048
Author(s):  
Philipp A Höhn ◽  
Augustin Vanrietvelde
Keyword(s):  


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Castro-Ruiz ◽  
Flaminia Giacomini ◽  
Alessio Belenchia ◽  
Časlav Brukner

A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-20105-3



2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander R. H. Smith ◽  
Mehdi Ahmadi

Abstract At the intersection of quantum theory and relativity lies the possibility of a clock experiencing a superposition of proper times. We consider quantum clocks constructed from the internal degrees of relativistic particles that move through curved spacetime. The probability that one clock reads a given proper time conditioned on another clock reading a different proper time is derived. From this conditional probability distribution, it is shown that when the center-of-mass of these clocks move in localized momentum wave packets they observe classical time dilation. We then illustrate a quantum correction to the time dilation observed by a clock moving in a superposition of localized momentum wave packets that has the potential to be observed in experiment. The Helstrom-Holevo lower bound is used to derive a proper time-energy/mass uncertainty relation.



Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 309 ◽  
Author(s):  
Shishir Khandelwal ◽  
Maximilian P.E. Lock ◽  
Mischa P. Woods

The theory of relativity associates a proper time with each moving object via its world line. In quantum theory however, such well-defined trajectories are forbidden. After introducing a general characterisation of quantum clocks, we demonstrate that, in the weak-field, low-velocity limit, all ``good'' quantum clocks experience time dilation as dictated by general relativity when their state of motion is classical (i.e. Gaussian). For nonclassical states of motion, on the other hand, we find that quantum interference effects may give rise to a significant discrepancy between the proper time and the time measured by the clock. The universality of this discrepancy implies that it is not simply a systematic error, but rather a quantum modification to the proper time itself. We also show how the clock's delocalisation leads to a larger uncertainty in the time it measures – a consequence of the unavoidable entanglement between the clock time and its center-of-mass degrees of freedom. We demonstrate how this lost precision can be recovered by performing a measurement of the clock's state of motion alongside its time reading.



Author(s):  
Vinicius Pretti Rossi
Keyword(s):  


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Castro-Ruiz ◽  
Flaminia Giacomini ◽  
Alessio Belenchia ◽  
Časlav Brukner

AbstractThe standard formulation of quantum theory relies on a fixed space-time metric determining the localisation and causal order of events. In general relativity, the metric is influenced by matter, and is expected to become indefinite when matter behaves quantum mechanically. Here, we develop a framework to operationally define events and their localisation with respect to a quantum clock reference frame, also in the presence of gravitating quantum systems. We find that, when clocks interact gravitationally, the time localisability of events becomes relative, depending on the reference frame. This relativity is a signature of an indefinite metric, where events can occur in an indefinite causal order. Even if the metric is indefinite, for any event we can find a reference frame where local quantum operations take their standard unitary dilation form. This form is preserved when changing clock reference frames, yielding physics covariant with respect to quantum reference frame transformations.



2020 ◽  
Vol 124 (16) ◽  
Author(s):  
A. J. Paige ◽  
A. D. K. Plato ◽  
M. S. Kim
Keyword(s):  


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 245 ◽  
Author(s):  
Mischa P. Woods ◽  
Álvaro M. Alhambra

Following the introduction of the task of reference frame errorcorrection \cite{hayden2017error}, we show how, by using reference frame alignment with clocks, one can add a continuous Abelian group of transversal logical gates to any error-correcting code. With this we further explore a way of circumventing the no-go theorem of Eastin and Knill, which states that if local errors are correctable, the group of transversal gates must be of finite order. We are able to do this by introducing a small error on the decoding procedure that decreases with the dimension of the frames used. Furthermore, we show that there is a direct relationship between how small this error can be and how accurate quantum clocks can be: the more accurate the clock, the smaller the error; and the no-go theorem would be violated if time could be measured perfectly in quantum mechanics. The asymptotic scaling of the error is studied under a number of scenarios of reference frames and error models. The scheme is also extended to errors at unknown locations, and we show how to achieve this by simple majority voting related error correction schemes on the reference frames. In the Outlook, we discuss our results in relation to the AdS/CFT correspondence and the Page-Wooters mechanism.



2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Iman Marvian

AbstractThe role of coherence in quantum thermodynamics has been extensively studied in the recent years and it is now well-understood that coherence between different energy eigenstates is a resource independent of other thermodynamics resources, such as work. A fundamental remaining open question is whether the laws of quantum mechanics and thermodynamics allow the existence of a coherence distillation machine, i.e., a machine that, by possibly consuming work, obtains pure coherent states from mixed states, at a nonzero rate. This is related to another fundamental question: Starting from many copies of noisy quantum clocks which are (approximately) synchronized with a reference clock, can one distill synchronized clocks in pure states, at a non-zero rate? Surprisingly, we find that the answer to both questions is negative for generic (full-rank) mixed states. However, at the same time, it is possible to distill a sub-linear number of pure coherent states with a vanishing error.



Sign in / Sign up

Export Citation Format

Share Document