MULTIPLE CONCURRENCE OF MULTI-PARTITE QUANTUM SYSTEM

2010 ◽  
Vol 08 (07) ◽  
pp. 1169-1177 ◽  
Author(s):  
HUA WU ◽  
XIN ZHAO ◽  
YAN-SONG LI ◽  
GUI-LU LONG

We propose a new way of description of the global entanglement property of a multi-partite pure state quantum system. Based on the idea of bipartite concurrence, by dividing the multi-partite quantum system into two subsystems, a combination of all the bipartite concurrences of a multi-partite quantum system is used to describe the entanglement property of the multi-partite system. We derive the analytical results for GHZ-state, W-state with arbitrary number of qubits, and cluster state with the number of particles no greater than 6.

2006 ◽  
Vol 6 (2) ◽  
pp. 173-183
Author(s):  
E. D'Hondt ◽  
P. Panangaden

It is well understood that the use of quantum entanglement significantly enhances the computational power of systems. Much of the attention has focused on Bell states and their multipartite generalizations. However, in the multipartite case it is known that there are several inequivalent classes of states, such as those represented by the W-state and the GHZ-state. Our main contribution is a demonstration of the special computational power of these states in the context of paradigmatic problems from classical distributed computing. Concretely, we show that the W-state is the only pure state that can be used to exactly solve the problem of leader election in anonymous quantum networks. Similarly we show that the GHZ-state is the only one that can be used to solve the problem of distributed consensus when no classical post-processing is considered. These results generalize to a family of W- and GHZ-like states. At the heart of the proofs of these impossibility results lie symmetry arguments.


2019 ◽  
Vol 34 (27) ◽  
pp. 1950213 ◽  
Author(s):  
Chia-Wei Tsai ◽  
Chun-Wei Yang ◽  
Narn-Yih Lee

Quantum secret sharing protocol, which lets a master share a secret with his/her agents and the agents can recover the master’s secret when they collaborate, is an important research issue in the quantum information field. In order to make the quantum protocol more practical, the concept of semi-quantum protocol is advanced by Boyer et al. Based on this concept, many semi-quantum secret sharing protocols have been proposed. The various entanglement states (including Bell state, GHZ state and so on) were used to be the quantum resources in these SQSS protocols, except for W-state which is the other multi-qubit entanglement state and different from GHZ states. Therefore, this study wants to use the entanglement property of W-state to propose the first three-party SQSS protocol and analyze the proposed protocol is free from the well-known attacks.


2010 ◽  
Vol 24 (04n05) ◽  
pp. 431-437 ◽  
Author(s):  
LIBING CHEN ◽  
YUHUA LIU ◽  
HONG LU

A quantum rotation can be divided into M pieces and teleported from a sender onto M distant receivers via the control of N agents in a quantum network. We utilize the entanglement property of a (2M + N + 1)-qubit Einstein–Podolsky–Rosen (EPR) — Greenberger–Horne–Zeilinger (GHZ) state to design a theoretical scheme for implementing these rotations remotely with unit fidelity and unit probability. The feature of the scheme is that, apart from a sender and M receivers, N agents are included in the process as controllers. Should any one of the N agents not cooperate, the receivers could not gain the original rotations. This scheme can be used to sender-encoded quantum secret sharing. It definitely has the strong security.


Author(s):  
Daniel Canarutto

The fundamental algebraic notions needed in many-particle physics are exposed. Spaces of free states containing an arbitrary number of particles of many types are introduced. The operator algebra generated by absorption and emission operators is studied as a natural generalisation of standard exterior algebra. The link between the discrete and the distributional formalisms is provided by the spaces of finite linear combinations of semi-densities of Dirac type.


2014 ◽  
Vol 310 ◽  
pp. 166-172 ◽  
Author(s):  
Xin Tong ◽  
Chuan Wang ◽  
Cong Cao ◽  
Ling-yan He ◽  
Ru Zhang

1999 ◽  
Vol 13 (12n13) ◽  
pp. 411-415 ◽  
Author(s):  
M. CORGINI ◽  
D. P. SANKOVICH

A quantum system of nonlinear oscillators is considered. Within the framework of Berezin's functional integral we prove the gaussian domination at finite temperature for some values of the chemical potential. Upper and lower bounds for the average number of particles with momentum p are derived.


2014 ◽  
Vol 21 (04) ◽  
pp. 1450008 ◽  
Author(s):  
Mazhar Ali

We study the dynamics of genuine multipartite entanglement under non-Markovian noise. Using a computable entanglement monotone for multipartite systems, we investigate a system of three qubits each of which is individually exposed to classical Ornstein–Uhlenbeck noise. We found that the W state mixed with the maximally mixed state is the most fragile state, whereas a similar mixture of GHZ state exhibits robust behaviour. We compare dynamics of these states with dynamics of similar mixtures of random states and weighted graph states. We also discuss the limiting cases.


2010 ◽  
Vol 19 (9) ◽  
pp. 090316 ◽  
Author(s):  
Ni Bin-Bin ◽  
Gu Yong-Jian ◽  
Chen Xiao-Dong ◽  
Liang Hong-Hui ◽  
Lin Xiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document