GENERALIZED THREE-PARTY QUBIT OPERATION SHARING

2013 ◽  
Vol 11 (01) ◽  
pp. 1350011 ◽  
Author(s):  
DAOCHU LIU ◽  
YIMIN LIU ◽  
XIAOFENG YIN ◽  
XIANSONG LIU ◽  
ZHANJUN ZHANG

Two three-party schemes of qubit operation sharing proposed by Zhang and Cheung [J. Phys. B44 (2011) 165508] are generalized by utilizing partially entangled states as quantum channels instead of maximally entangled ones. Their quantum and classical resource consumptions, necessary-operation complexities, success probabilities and efficiencies are calculated and compared with each other. Moreover, it is revealed that the success probabilities are completely determined by the shared entanglement.

2010 ◽  
Vol 283 (1) ◽  
pp. 184-188 ◽  
Author(s):  
Goren Gordon ◽  
Gustavo Rigolin

Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 352 ◽  
Author(s):  
Zhan-Yun Wang ◽  
Yi-Tao Gou ◽  
Jin-Xing Hou ◽  
Li-Ke Cao ◽  
Xiao-Hui Wang

We explicitly present a generalized quantum teleportation of a two-qubit entangled state protocol, which uses two pairs of partially entangled particles as quantum channel. We verify that the optimal probability of successful teleportation is determined by the smallest superposition coefficient of these partially entangled particles. However, the two-qubit entangled state to be teleported will be destroyed if teleportation fails. To solve this problem, we show a more sophisticated probabilistic resumable quantum teleportation scheme of a two-qubit entangled state, where the state to be teleported can be recovered by the sender when teleportation fails. Thus the information of the unknown state is retained during the process. Accordingly, we can repeat the teleportion process as many times as one has available quantum channels. Therefore, the quantum channels with weak entanglement can also be used to teleport unknown two-qubit entangled states successfully with a high number of repetitions, and for channels with strong entanglement only a small number of repetitions are required to guarantee successful teleportation.


2013 ◽  
Vol 59 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Zhang Wen ◽  
Xiong Kuang-Wei ◽  
Zuo Xue-Qin ◽  
Zhang Zi-Yun

2015 ◽  
Vol 112 (46) ◽  
pp. 14197-14201 ◽  
Author(s):  
Mario Krenn ◽  
Johannes Handsteiner ◽  
Matthias Fink ◽  
Robert Fickler ◽  
Anton Zeilinger

Photons with a twisted phase front can carry a discrete, in principle, unbounded amount of orbital angular momentum (OAM). The large state space allows for complex types of entanglement, interesting both for quantum communication and for fundamental tests of quantum theory. However, the distribution of such entangled states over large distances was thought to be infeasible due to influence of atmospheric turbulence, indicating a serious limitation on their usefulness. Here we show that it is possible to distribute quantum entanglement encoded in OAM over a turbulent intracity link of 3 km. We confirm quantum entanglement of the first two higher-order levels (with OAM=± 1ℏ and ± 2ℏ). They correspond to four additional quantum channels orthogonal to all that have been used in long-distance quantum experiments so far. Therefore, a promising application would be quantum communication with a large alphabet. We also demonstrate that our link allows access to up to 11 quantum channels of OAM. The restrictive factors toward higher numbers are technical limitations that can be circumvented with readily available technologies.


2014 ◽  
Vol 12 (03) ◽  
pp. 1450011 ◽  
Author(s):  
Pengfei Xing ◽  
Yimin Liu ◽  
Chuanmei Xie ◽  
Xiansong Liu ◽  
Zhanjun Zhang

Two three-party schemes are put forward for sharing quantum operations on a remote qutrit with local operation and classical communication as well as shared entanglements. The first scheme uses a two-qutrit and three-qutrit non-maximally entangled states as quantum channels, while the second replaces the three-qutrit non-maximally entangled state with a two-qutrit. Both schemes are treated and compared from the four aspects of quantum and classical resource consumption, necessary-operation complexity, success probability and efficiency. It is found that the latter is overall more optimal than the former as far as a restricted set of operations is concerned. In addition, comparisons of both schemes with other four relevant ones are also made to show their two features, including degree generalization and channel-state generalization. Furthermore, some concrete discussions on both schemes are made to expose their important features of security, symmetry and experimental feasibility. Particularly, it is revealed that the success probabilities and intrinsic efficiencies in both schemes are completely determined by the shared entanglement.


2006 ◽  
Vol 04 (01) ◽  
pp. 181-187 ◽  
Author(s):  
B. REZNIK

We propose a method for implementing remotely a generalized measurement (POVM). We show that remote generalized measurements consume less entanglement compared with remote projective measurements, and can be optimally performed using non-maximally entangled states. We derive the entanglement cost of such measurements.


2008 ◽  
Vol 86 (6) ◽  
pp. 849-851
Author(s):  
K -W Xiong

A physical scheme for teleporting unknown atomic entangled states via three-atom non-maximally entangled states is proposed in cavity quantum electrodynamics. In this scheme, the Greenberger–Horne–Zeilinger class states are used as quantum channels. The most distinct feature of our scheme is that, not only the effects of the cavity decay and thermal field are eliminated, but also the teleportation and distillation procedure can be realized simultaneously.PACS Nos.: 03.67.Hk, 03.67.Pp


Sign in / Sign up

Export Citation Format

Share Document