scholarly journals Compliance Control and Human–Robot Interaction: Part 1 — Survey

2014 ◽  
Vol 11 (03) ◽  
pp. 1430001 ◽  
Author(s):  
Said G. Khan ◽  
Guido Herrmann ◽  
Mubarak Al Grafi ◽  
Tony Pipe ◽  
Chris Melhuish

Compliance control is highly relevant to human safety in human–robot interaction (HRI). This paper presents a review of various compliance control techniques. The paper is aimed to provide a good background knowledge for new researchers and highlight the current hot issues in compliance control research. Active compliance, passive compliance, adaptive and reinforcement learning-based compliance control techniques are discussed. This paper provides a comprehensive literature survey of compliance control keeping in view physical human robot interaction (pHRI) e.g., passing an object, such as a cup, between a human and a robot. Compliance control may eventually provide an immediate and effective layer of safety by avoiding pushing, pulling or clamping in pHRI. Emerging areas such as soft robotics, which exploit the deformability of biomaterial as well as hybrid approaches which combine active and passive compliance are also highlighted.

2014 ◽  
Vol 11 (03) ◽  
pp. 1430002 ◽  
Author(s):  
Said G. Khan ◽  
Guido Herrmann ◽  
Alexander Lenz ◽  
Mubarak Al Grafi ◽  
Tony Pipe ◽  
...  

Compliance control is highly relevant to human safety in human–robot interaction (HRI). This paper presents multi-dimensional compliance control of a humanoid robot arm. A dynamic model-free adaptive controller with an anti-windup compensator is implemented on four degrees of freedom (DOF) of a humanoid robot arm. The paper is aimed to compliment the associated review paper on compliance control. This is a model reference adaptive compliance scheme which employs end-effector forces (measured via joint torque sensors) as a feedback. The robot's body-own torques are separated from external torques via a simple but effective algorithm. In addition, an experiment of physical human robot interaction is conducted employing the above mentioned adaptive compliance control along with a speech interface. The experiment is focused on passing an object (a cup) between a human and a robot. Compliance is providing an immediate layer of safety for this HRI scenario by avoiding pushing, pulling or clamping and minimizing the effect of collisions with the environment.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042095364
Author(s):  
Lan Ye ◽  
Genliang Xiong ◽  
Cheng Zeng ◽  
Hua Zhang

Collaborative robot has been widespread application prospect, such as homes, manufacturing, and health-care etc. In physical human-robot interaction, the external force appears inevitably in contact with environment or human, especially the interactive tasks such as trajectory tracking requirements and force compliance control. In this article, a method based on interaction intention estimation, which solve the problem of trajectory tracking accuracy and force compliance control in the same direction for the 7-DOF robot, is proposed. The increased virtual force depended on the manipuility performance index and inverse kinematic solution used the kinematic decoupling method based on the redundant angle avoid the singularity of redundant robot. Then, based on interactive intention estimation, a control strategy of variable impedance sliding mode theory in the presence of virtual force and contact force is proposed to achieve the trajectory tracking. We adopted hyperbolic tangent function to alleviate the chattering problem caused by switch function and validated the control system stability by Lyapunov theorem. Finally, Matlab simulations exhibit a 97.8% of high tracking accuracy amid the external force is 43% less than variable impedance parameters. It is therefore proved that the proposed method can achieve asymptotic tracking and the compliant behavior in physical human-robot interaction.


2009 ◽  
Vol 06 (04) ◽  
pp. 699-725 ◽  
Author(s):  
DZMITRY TSETSERUKOU ◽  
NAOKI KAWAKAMI ◽  
SUSUMU TACHI

The paper focuses on design and control of a new anthropomorphic robot arm enabling the torque measurement in each joint to ensure safety while performing tasks of physical interaction with human and environment. When the contact of the robot arm with an object occurs, local admittance algorithm provides active compliance of corresponding robot arm joint. Thus, the whole structure of the manipulator can safely interact with an unstructured environment. The detailed design procedure of the 4-DOF robot arm and optical torque sensors is described in the paper. The experimental results of joint admittance control revealed the feasibility of the proposed approach to provide safe interaction of entire structure of robot arm with a person. The control system with load angle position feedback and lead compensator is proposed to improve dynamic behavior of flexible joint arm. The experimental results show high performance of the developed controller in terms of successful damping of vibrations.


2009 ◽  
Author(s):  
Matthew S. Prewett ◽  
Kristin N. Saboe ◽  
Ryan C. Johnson ◽  
Michael D. Coovert ◽  
Linda R. Elliott

Sign in / Sign up

Export Citation Format

Share Document