scholarly journals Compliance Control and Human–Robot Interaction: Part II — Experimental Examples

2014 ◽  
Vol 11 (03) ◽  
pp. 1430002 ◽  
Author(s):  
Said G. Khan ◽  
Guido Herrmann ◽  
Alexander Lenz ◽  
Mubarak Al Grafi ◽  
Tony Pipe ◽  
...  

Compliance control is highly relevant to human safety in human–robot interaction (HRI). This paper presents multi-dimensional compliance control of a humanoid robot arm. A dynamic model-free adaptive controller with an anti-windup compensator is implemented on four degrees of freedom (DOF) of a humanoid robot arm. The paper is aimed to compliment the associated review paper on compliance control. This is a model reference adaptive compliance scheme which employs end-effector forces (measured via joint torque sensors) as a feedback. The robot's body-own torques are separated from external torques via a simple but effective algorithm. In addition, an experiment of physical human robot interaction is conducted employing the above mentioned adaptive compliance control along with a speech interface. The experiment is focused on passing an object (a cup) between a human and a robot. Compliance is providing an immediate layer of safety for this HRI scenario by avoiding pushing, pulling or clamping and minimizing the effect of collisions with the environment.

Author(s):  
Dr. S. V. Viraktamath

Abstract: Technology is ever evolving regardless of the current conditions. Emerging technologies have capability to change the world. Innovation is everywhere we look. One of the technologies that is emerging is Humanoid Robotics. This paper gives a review about influence of Humanoid Robot in human life also discuss the appearance of various robots. Artists, engineers and scientists have all been inspired by the human body and intellect. Humanoid Robotics is focused with the creation of robots that are inspired directly by human abilities. A humanoid robot is the one with a body that is designed to look like a human. Humanoid Robots imitate characteristics of human form and behaviour selectively. The robot could be used for practical purposes, such as interacting with human equipment and environments or for research purposes, such as investigating biped walking. Keywords: Biped Robot, Degrees of Freedom, Humanoid Robot, Human-Robot Interaction


Author(s):  
Giorgio Metta

This chapter outlines a number of research lines that, starting from the observation of nature, attempt to mimic human behavior in humanoid robots. Humanoid robotics is one of the most exciting proving grounds for the development of biologically inspired hardware and software—machines that try to recreate billions of years of evolution with some of the abilities and characteristics of living beings. Humanoids could be especially useful for their ability to “live” in human-populated environments, occupying the same physical space as people and using tools that have been designed for people. Natural human–robot interaction is also an important facet of humanoid research. Finally, learning and adapting from experience, the hallmark of human intelligence, may require some approximation to the human body in order to attain similar capacities to humans. This chapter focuses particularly on compliant actuation, soft robotics, biomimetic robot vision, robot touch, and brain-inspired motor control in the context of the iCub humanoid robot.


Author(s):  
Margot M. E. Neggers ◽  
Raymond H. Cuijpers ◽  
Peter A. M. Ruijten ◽  
Wijnand A. IJsselsteijn

AbstractAutonomous mobile robots that operate in environments with people are expected to be able to deal with human proxemics and social distances. Previous research investigated how robots can approach persons or how to implement human-aware navigation algorithms. However, experimental research on how robots can avoid a person in a comfortable way is largely missing. The aim of the current work is to experimentally determine the shape and size of personal space of a human passed by a robot. In two studies, both a humanoid as well as a non-humanoid robot were used to pass a person at different sides and distances, after which they were asked to rate their perceived comfort. As expected, perceived comfort increases with distance. However, the shape was not circular: passing at the back of a person is more uncomfortable compared to passing at the front, especially in the case of the humanoid robot. These results give us more insight into the shape and size of personal space in human–robot interaction. Furthermore, they can serve as necessary input to human-aware navigation algorithms for autonomous mobile robots in which human comfort is traded off with efficiency goals.


2020 ◽  
Vol 12 (1) ◽  
pp. 58-73
Author(s):  
Sofia Thunberg ◽  
Tom Ziemke

AbstractInteraction between humans and robots will benefit if people have at least a rough mental model of what a robot knows about the world and what it plans to do. But how do we design human-robot interactions to facilitate this? Previous research has shown that one can change people’s mental models of robots by manipulating the robots’ physical appearance. However, this has mostly not been done in a user-centred way, i.e. without a focus on what users need and want. Starting from theories of how humans form and adapt mental models of others, we investigated how the participatory design method, PICTIVE, can be used to generate design ideas about how a humanoid robot could communicate. Five participants went through three phases based on eight scenarios from the state-of-the-art tasks in the RoboCup@Home social robotics competition. The results indicate that participatory design can be a suitable method to generate design concepts for robots’ communication in human-robot interaction.


2020 ◽  
Author(s):  
Sebastijan Veselic ◽  
Claudio Zito ◽  
Dario Farina

Designing robotic assistance devices for manipulation tasks is challenging. This work aims at improving accuracy and usability of physical human-robot interaction (pHRI) where a user interacts with a physical robotic device (e.g., a human operated manipulator or exoskeleton) by transmitting signals which need to be interpreted by the machine. Typically these signals are used as an open-loop control, but this approach has several limitations such as low take-up and high cognitive burden for the user. In contrast, a control framework is proposed that can respond robustly and efficiently to intentions of a user by reacting proactively to their commands. The key insight is to include context- and user-awareness in the controller, improving decision making on how to assist the user. Context-awareness is achieved by creating a set of candidate grasp targets and reach-to grasp trajectories in a cluttered scene. User-awareness is implemented as a linear time-variant feedback controller (TV-LQR) over the generated trajectories to facilitate the motion towards the most likely intention of a user. The system also dynamically recovers from incorrect predictions. Experimental results in a virtual environment of two degrees of freedom control show the capability of this approach to outperform manual control. By robustly predicting the user’s intention, the proposed controller allows the subject to achieve superhuman performance in terms of accuracy and thereby usability.


Author(s):  
Stefan Schiffer ◽  
Alexander Ferrein

In this work we report on our effort to design and implement an early introduction to basic robotics principles for children at kindergarten age.  The humanoid robot Pepper, which is a great platform for human-robot interaction experiments, was presenting the lecture by reading out the contents to the children making use of its speech synthesis capability.  One of the main challenges of this effort was to explain complex robotics contents in a way that pre-school children could follow the basic principles and ideas using examples from their world of experience. A quiz in a Runaround-game-show style after the lecture activated the children to recap the contents  they acquired about how mobile robots work in principle. Besides the thrill being exposed to a mobile robot that would also react to the children, they were very excited and at the same time very concentrated. What sets apart our effort from other work is that part of the lecturing is actually done by a robot itself and that a quiz at the end of the lesson is done using robots as well. To the best of our knowledge this is one of only few attempts to use Pepper not as a tele-teaching tool, but as the teacher itself in order to engage pre-school children with complex robotics contents. We  got very positive feedback from the children as well as from their educators.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 680
Author(s):  
Ethan Jones ◽  
Winyu Chinthammit ◽  
Weidong Huang ◽  
Ulrich Engelke ◽  
Christopher Lueg

Control of robot arms is often required in engineering and can be performed by using different methods. This study examined and symmetrically compared the use of a controller, eye gaze tracker and a combination thereof in a multimodal setup for control of a robot arm. Tasks of different complexities were defined and twenty participants completed an experiment using these interaction modalities to solve the tasks. More specifically, there were three tasks: the first was to navigate a chess piece from a square to another pre-specified square; the second was the same as the first task, but required more moves to complete; and the third task was to move multiple pieces to reach a solution to a pre-defined arrangement of the pieces. Further, while gaze control has the potential to be more intuitive than a hand controller, it suffers from limitations with regard to spatial accuracy and target selection. The multimodal setup aimed to mitigate the weaknesses of the eye gaze tracker, creating a superior system without simply relying on the controller. The experiment shows that the multimodal setup improves performance over the eye gaze tracker alone ( p < 0.05 ) and was competitive with the controller only setup, although did not outperform it ( p > 0.05 ).


Sign in / Sign up

Export Citation Format

Share Document