ANALYSIS OF HIGH-SPEED RAIL ACCOUNTING FOR JUMPING WHEEL PHENOMENON

2014 ◽  
Vol 11 (03) ◽  
pp. 1343007 ◽  
Author(s):  
KOK KENG ANG ◽  
JIAN DAI ◽  
MINH THI TRAN ◽  
VAN HAI LUONG

In this paper, a computational study using the moving element method (MEM) was carried out to investigate the dynamic response of a high-speed train–track system. Results obtained using Hertz contact model and linearized Hertz contact model are compared and discussed. The dynamic responses of a train travelling across a uniform foundation and a transition region are also investigated. Parametric study is performed to understand the effect of various factors on the occurrence and patterns of the jumping wheel phenomenon such as the variation of foundation stiffness, travelling speed of the train and the severity of railhead roughness.

2018 ◽  
Vol 148 ◽  
pp. 05007 ◽  
Author(s):  
Jian Dai ◽  
Kok Keng Ang ◽  
Dongqi Jiang

It is very common in the ballasted track system that sleepers are not well supported by the ballast materials due to the uneven settlement of the ballast under repeated train passage. These unsupported track elements are often termed as hanging sleepers and they can lead to undesirable effects due to increased dynamic response of the train-track system, especially when the speed of the train is high. In this paper, we present a computation scheme in conjunction with the moving element method for the analysis of high-speed train-track dynamics accounting for hanging sleepers. The proposed computational scheme will be first verified by comparison with available analytical results. The dynamic response of a high-speed train traveling on a ballasted track considering unsupported sleepers is next investigated. Various factors affecting the response of the high-speed rail system including the speed of the train, the number of hanging sleepers and the pattern of the hanging sleepers will be examined and discussed.


Author(s):  
Jian Dai ◽  
Kok Keng Ang ◽  
Minh Thi Tran ◽  
Van Hai Luong ◽  
Dongqi Jiang

In this paper, a computational scheme in conjunction with the moving element method has been proposed to investigate the dynamic response of a high-speed rail system in which the discrete sleepers on the subgrade support the railway track. The track foundation is modeled as a beam supported by uniformly spaced discrete spring-damper units. The high-speed train is modeled as a moving sprung-mass system that travels over the track. The effect of the stiffness of the discrete supports, train speed, and railhead roughness on the dynamic behavior of the train–track system has been investigated. As a comparison, the response of a continuously supported high-speed rail system that uses a foundation stiffness equivalent to that of a discretely supported track has been obtained. The difference in results between the “equivalent” continuously supported and the discretely supported high-speed rails has been compared and discussed. In general, the study found that a high-speed train that travels over a discretely supported track produces more severe vibrations than that travels over a continuously supported track of equivalent foundation stiffness.


2021 ◽  
Vol 26 (3) ◽  
pp. 231-239
Author(s):  
Zhiqiang Wang ◽  
Zhenyu Lei

By using the transient finite element method, a three-dimensional wheelset-track coupled rolling contact model for high-speed rail is established, and the rationality and effectiveness of the model are verified by field measurements. Next, the wheel-rail contact stress states and relative slip characteristics are calculated and analyzed to reveal the cause of inner rail corrugation. Then, the vertical vibration acceleration of the rail/wheel is taken as the output variable to study the dynamic responses of the wheelset-track system. Finally, the parameter sensitivity analysis is carried out. The results show that the maximum normal/tangential contact stress between the inner wheel and inner rail is greater than that between outer wheel and outer rail due to the unbalanced load of inner rail caused by the excess superelevation of track structure, which indicates that the unbalanced load of the inner rail may aggravate the development of rail wear, and the rationality of the model established in this paper is verified. The wheel-rail relative slip region on the inner rail side appears periodically, and the distance between the two adjacent slip regions is close to the characteristic wavelength of the measured inner rail corrugation, which illustrates that the periodic variation of slip regions on the inner rail surface plays an important role in the formation of rail corrugation, and the validity of the model is verified. The periodic distribution of wheel-rail relative slip regions on the outer rail surface is not obvious, demonstrating that the outer rail tends to form uniform wear, which is consistent with the fact that the outer rail corrugation is slight in the measured section. The wheelset-track system has been in the process of unstable continuous oscillation in the analysis interval, combined with the analysis results of the wheel-rail relative slip characteristics, it can be concluded that the unstable self-excited vibration of wheelset-track system under the condition of tangential contact force reaching saturation is the main cause of rail corrugation. The dominant characteristic frequencies of vertical vibration accelerations of rail and wheel are all 561 Hz, the corresponding characteristic wavelength (148 mm) is close to the distance (150 mm) between the calculated adjacent slip regions, and is also close to the characteristic wavelengths (125 mm and 160 mm) of inner rail corrugation, which shows that the resonance phenomenon occurs in the wheelset-track system at the above frequency, thus leading to the increase of dynamic responses of wheelset-track system. The fastener vertical stiffness and wheel-rail coefficient of friction have significant effect on the development of rail corrugation, and the running speed determines the occurrence probability of inner/outer rail corrugation by affecting the track superelevation state.


Author(s):  
Penghao Li ◽  
Zhonglong Li ◽  
Zhaoling Han ◽  
Shengyang Zhu ◽  
Wanming Zhai ◽  
...  

In Northeast China and the areas along Sichuan-Tibet railway, collision between floating ice and piers of railway bridges seriously threatens the train operation safety. The safety of high-speed train running on the bridge subject to the impact of floating ice collision is rarely assessed considering the spatial interaction of the train-track-bridge-ice system. To evaluate the running safety and ride comfort of trains and the structural stability of railway bridges under the collision between floating ices and piers, a train-track-bridge (TTB) dynamic interaction model considering the impact of floating ice is established. Using the refined finite element model, the collision process of floating ice on bridge pier is simulated, and the impact loads are employed as the excitation input of the TTB dynamics model. Taking a 5 × 32 m simply-supported bridges as a case study, the influence of bridge structural parameters on the floating ice collision system is investigated, and then the dynamic responses of the TTB system induced by the floating ice impact loads are analyzed in detail. Finally, the effect of the ice impact loads on the running safety of the high-speed train is revealed. Results show that under the floating ice impact loads, the angle of the pier sharp-nose (APSN) and lateral stiffness of foundations are the key parameters that influence the dynamic responses of the bridge, and an improperly small lateral stiffness of foundation would lead to an instability of bridge structure. The influence of ice impact loads on the dynamic responses of the train is remarkable. The lateral vibration acceleration, derailment factor and lateral wheel rail force caused by the ice impact loads are all greater than those caused by the track irregularity, while the wheel unloading rate is slightly smaller. In addition, the running speed of train is also closely related to the running safety and ride comfort when the collision occurs. When the train speed exceeds 400 km/h, the train passing through the bridge would have the possibility of derailment.


2015 ◽  
Vol 16 (2) ◽  
pp. 170-170 ◽  
Author(s):  
Liang Ling ◽  
Xin-biao Xiao ◽  
Jia-yang Xiong ◽  
Li Zhou ◽  
Ze-feng Wen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document