Dynamic Effects in a High-Speed Train-Track System

Author(s):  
R. Bogacz ◽  
K. Frischmuth ◽  
W. Czyczula
2018 ◽  
Vol 148 ◽  
pp. 05007 ◽  
Author(s):  
Jian Dai ◽  
Kok Keng Ang ◽  
Dongqi Jiang

It is very common in the ballasted track system that sleepers are not well supported by the ballast materials due to the uneven settlement of the ballast under repeated train passage. These unsupported track elements are often termed as hanging sleepers and they can lead to undesirable effects due to increased dynamic response of the train-track system, especially when the speed of the train is high. In this paper, we present a computation scheme in conjunction with the moving element method for the analysis of high-speed train-track dynamics accounting for hanging sleepers. The proposed computational scheme will be first verified by comparison with available analytical results. The dynamic response of a high-speed train traveling on a ballasted track considering unsupported sleepers is next investigated. Various factors affecting the response of the high-speed rail system including the speed of the train, the number of hanging sleepers and the pattern of the hanging sleepers will be examined and discussed.


2014 ◽  
Vol 11 (03) ◽  
pp. 1343007 ◽  
Author(s):  
KOK KENG ANG ◽  
JIAN DAI ◽  
MINH THI TRAN ◽  
VAN HAI LUONG

In this paper, a computational study using the moving element method (MEM) was carried out to investigate the dynamic response of a high-speed train–track system. Results obtained using Hertz contact model and linearized Hertz contact model are compared and discussed. The dynamic responses of a train travelling across a uniform foundation and a transition region are also investigated. Parametric study is performed to understand the effect of various factors on the occurrence and patterns of the jumping wheel phenomenon such as the variation of foundation stiffness, travelling speed of the train and the severity of railhead roughness.


2015 ◽  
Vol 16 (2) ◽  
pp. 170-170 ◽  
Author(s):  
Liang Ling ◽  
Xin-biao Xiao ◽  
Jia-yang Xiong ◽  
Li Zhou ◽  
Ze-feng Wen ◽  
...  

2013 ◽  
Vol 1 (1-2) ◽  
pp. 3-24 ◽  
Author(s):  
Wanming Zhai ◽  
He Xia ◽  
Chengbiao Cai ◽  
Mangmang Gao ◽  
Xiaozhen Li ◽  
...  

Author(s):  
Jian Dai ◽  
Kok Keng Ang ◽  
Minh Thi Tran ◽  
Van Hai Luong ◽  
Dongqi Jiang

In this paper, a computational scheme in conjunction with the moving element method has been proposed to investigate the dynamic response of a high-speed rail system in which the discrete sleepers on the subgrade support the railway track. The track foundation is modeled as a beam supported by uniformly spaced discrete spring-damper units. The high-speed train is modeled as a moving sprung-mass system that travels over the track. The effect of the stiffness of the discrete supports, train speed, and railhead roughness on the dynamic behavior of the train–track system has been investigated. As a comparison, the response of a continuously supported high-speed rail system that uses a foundation stiffness equivalent to that of a discretely supported track has been obtained. The difference in results between the “equivalent” continuously supported and the discretely supported high-speed rails has been compared and discussed. In general, the study found that a high-speed train that travels over a discretely supported track produces more severe vibrations than that travels over a continuously supported track of equivalent foundation stiffness.


Sign in / Sign up

Export Citation Format

Share Document