Reanalysis Method for Second Derivatives of Static Displacement

2019 ◽  
Vol 17 (08) ◽  
pp. 1950056 ◽  
Author(s):  
Wenjie Zuo ◽  
Jiaxin Fang ◽  
Zengming Feng

The reanalysis method to obtain the second derivatives of static displacement is innovatively proposed in this paper. This method is based on the combined approximations method. The reanalysis formulations of the second derivative of static displacement are derived to provide a programmatic procedure of formulations construction. Besides, the normalized error and the number of algebraic operations are considered to evaluate the accuracy and efficiency, respectively. Finally, three typical numerical results verify the accuracy and robustness of the proposed method.

2017 ◽  
Vol 919 (1) ◽  
pp. 7-12
Author(s):  
N.A Sorokin

The method of the geopotential parameters determination with the use of the gradiometry data is considered. The second derivative of the gravitational potential in the correction equation on the rectangular coordinates x, y, z is used as a measured variable. For the calculated value of the measured quantity required for the formation of a free member of the correction equation, the the Cunningham polynomials were used. We give algorithms for computing the second derivatives of the Cunningham polynomials on rectangular coordinates x, y, z, which allow to calculate the second derivatives of the geopotential at the rectangular coordinates x, y, z.Then we convert derivatives obtained from the Cartesian coordinate system in the coordinate system of the gradiometer, which allow to calculate the free term of the correction equation. Afterwards the correction equation coefficients are calculated by differentiating the formula for calculating the second derivative of the gravitational potential on the rectangular coordinates x, y, z. The result is a coefficient matrix of the correction equations and corrections vector of the free members of equations for each component of the tensor of the geopotential. As the number of conditional equations is much more than the number of the specified parameters, we go to the drawing up of the system of normal equations, from which solutions we determine the required corrections to the harmonic coefficients.


2021 ◽  
Author(s):  
Abdon Atangana ◽  
Seda IGRET ARAZ

Some mathematical concepts have been used in the last decades to predict the behavior of spread of infectious diseases. Among them, the reproductive number concept has been used in several published papers for study the stability of the spread. Some conditions were suggested to predict there would be either stability or instability. An analysis was also suggested to determine conditions under which infectious classes will increase or die out. Some authors pointed out limitations of the reproductive number, as they presented its inability to fairly help understand the spread patterns. The concept of strength number and analysis of second derivatives of the mathematical models were suggested as additional tools to help detect waves. In this paper, we aim at applying these additional analyses in a simple model to predict the future. Keywords: Strength number, second derivative analysis, waves, piecewise modeling.


Geophysics ◽  
1984 ◽  
Vol 49 (9) ◽  
pp. 1466-1494 ◽  
Author(s):  
H. Gjøystdal ◽  
J. E. Reinhardsen ◽  
B. Ursin

The seismic rays and wavefront curvatures are determined by solving a system of nonlinear ordinary differential equations. For media with constant velocity and for media with constant velocity gradient, simplified solutions exist. In a general inhomogeneous medium these equations must be solved by numerical approximations. The integration of the ray‐tracing and wavefront curvature equations is then performed by a modified divided difference form of the Adams PECE (Predict‐Evaluate‐Correct‐Evaluate) formulas and local extrapolation. The interfaces between the layers are represented by bicubic splines. The changes in ray direction and wavefront curvature at the interfaces are computed using standard formulas. For three‐dimensional media, two quadratic traveltime approximations have been proposed. Both are based on a Taylor series expansion with reference to a ray from a reference source point to a reference receiver point. The first approximation corresponds to expanding the square of the traveltime in a Taylor series and taking the square root of the result. The second approximation corresponds to expanding the traveltime in a Taylor series. The two traveltime approximations may be expressed in source‐receiver coordinates or in midpoint‐half‐offset coordinates. Simplified expressions are obtained when the reference source and receiver coincide, giving zero‐offset approximations, for which the reference ray is a normal‐incidence ray. A new method is proposed for computing the second derivatives of the normal‐incidence traveltime with respect to the source‐receiver midpoint coordinates. By considering a beam of normal‐incidence rays it is shown that the second‐derivative matrix may be found by computing the wavefront curvature along a reference normal‐incidence ray starting at the reflection point with the wavefront curvature equal to the curvature of the reflecting interface. From this second‐derivative matrix the normal moveout velocity can be computed for any seismic line through the reference source‐receiver midpoint. It is also shown how a reverse wavefront curvature calculation may be used, in a time‐to‐depth migration scheme, to compute the curvature of the reflecting interface from the estimated second derivatives of the normal‐incidence traveltime. Numerical results for different three‐dimensional models indicate that the first traveltime approximation, based on an expansion of the square of the traveltime, is the most accurate for shallow reflectors and for simple models. For deeper reflectors the two approximations give comparable results, and for models with complicated velocity variations the second approximation may be slightly better than the first one, depending on the particular model chosen. A simplified traveltime approximation may be used in a three‐dimensional seismic velocity analysis. Instead of estimating the stacking velocity one must estimate three elements in a [Formula: see text] symmetric matrix. The accuracy and range of validity of the simplified traveltime approximation are investigated for different three‐dimensional models.


Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 1009-1016 ◽  
Author(s):  
Ahmet Akdemir ◽  
Özdemir Emin ◽  
Ardıç Avcı ◽  
Abdullatif Yalçın

In this paper, firstly we prove an integral identity that one can derive several new equalities for special selections of n from this identity: Secondly, we established more general integral inequalities for functions whose second derivatives of absolute values are GA-convex functions based on this equality.


1985 ◽  
Vol 50 (4) ◽  
pp. 791-798 ◽  
Author(s):  
Vilém Kodýtek

The McMillan-Mayer (MM) free energy per unit volume of solution AMM, is employed as a generating function of the MM system of thermodynamic quantities for solutions in the state of osmotic equilibrium with pure solvent. This system can be defined by replacing the quantities G, T, P, and m in the definition of the Lewis-Randall (LR) system by AMM, T, P0, and c (P0 being the pure solvent pressure). Following this way the LR to MM conversion relations for the first derivatives of the free energy are obtained in a simple form. New relations are derived for its second derivatives.


1990 ◽  
Vol 112 (1) ◽  
pp. 83-87 ◽  
Author(s):  
R. H. Fries ◽  
B. M. Coffey

Solution of rail vehicle dynamics models by means of numerical simulation has become more prevalent and more sophisticated in recent years. At the same time, analysts and designers are increasingly interested in the response of vehicles to random rail irregularities. The work described in this paper provides a convenient method to generate random vertical and crosslevel irregularities when their time histories are required as inputs to a numerical simulation. The solution begins with mathematical models of vertical and crosslevel power spectral densities (PSDs) representing PSDs of track classes 4, 5, and 6. The method implements state-space models of shape filters whose frequency response magnitude squared matches the desired PSDs. The shape filters give time histories possessing the proper spectral content when driven by white noise inputs. The state equations are solved directly under the assumption that the white noise inputs are constant between time steps. Thus, the state transition matrix and the forcing matrix are obtained in closed form. Some simulations require not only vertical and crosslevel alignments, but also the first and occasionally the second derivatives of these signals. To accommodate these requirements, the first and second derivatives of the signals are also generated. The responses of the random vertical and crosslevel generators depend upon vehicle speed, sample interval, and track class. They possess the desired PSDs over wide ranges of speed and sample interval. The paper includes a comparison between synthetic and measured spectral characteristics of class 4 track. The agreement is very good.


1983 ◽  
Vol 105 (3) ◽  
pp. 200-202 ◽  
Author(s):  
D. M. Trujillo ◽  
H. R. Busby

A dynamic programming filter is derived to estimate the first and second derivatives of empirical data. A series of numerical experiments are conducted using a known differentiable function with various amounts of added random noise.


Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Nicole Debeglia ◽  
Jacques Corpel

A new method has been developed for the automatic and general interpretation of gravity and magnetic data. This technique, based on the analysis of 3-D analytic signal derivatives, involves as few assumptions as possible on the magnetization or density properties and on the geometry of the structures. It is therefore particularly well suited to preliminary interpretation and model initialization. Processing the derivatives of the analytic signal amplitude, instead of the original analytic signal amplitude, gives a more efficient separation of anomalies caused by close structures. Moreover, gravity and magnetic data can be taken into account by the same procedure merely through using the gravity vertical gradient. The main advantage of derivatives, however, is that any source geometry can be considered as the sum of only two types of model: contact and thin‐dike models. In a first step, depths are estimated using a double interpretation of the analytic signal amplitude function for these two basic models. Second, the most suitable solution is defined at each estimation location through analysis of the vertical and horizontal gradients. Practical implementation of the method involves accurate frequency‐domain algorithms for computing derivatives with an automatic control of noise effects by appropriate filtering and upward continuation operations. Tests on theoretical magnetic fields give good depth evaluations for derivative orders ranging from 0 to 3. For actual magnetic data with borehole controls, the first and second derivatives seem to provide the most satisfactory depth estimations.


Sign in / Sign up

Export Citation Format

Share Document