scholarly journals Nonlocal gravity: Conformally flat spacetimes

2016 ◽  
Vol 13 (06) ◽  
pp. 1650081 ◽  
Author(s):  
Donato Bini ◽  
Bahram Mashhoon

The field equations of the recent nonlocal generalization of Einstein’s theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity (NLG) in 2D spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein’s field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of NLG.

1977 ◽  
Vol 30 (1) ◽  
pp. 109 ◽  
Author(s):  
DRK Reddy

Plane symmetric solutions of a scalar-tensor theory proposed by Dunn have been obtained. These solutions are observed to be similar to the plane symmetric solutions of the field equations corresponding to zero mass scalar fields obtained by Patel. It is found that the empty space-times of general relativity discussed by Taub and by Bera are obtained as special cases.


Author(s):  
Nils Andersson

This chapter provides an overview of Einstein’s geometric theory of gravity – general relativity. It introduces the mathematics required to model the motion of objects in a curved spacetime and provides an intuitive derivation of Einstein’s field equations.


2020 ◽  
Vol 101 (12) ◽  
Author(s):  
Enrique Alvarez ◽  
Raquel Santos-Garcia

Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 170
Author(s):  
Aroonkumar Beesham ◽  
Fisokuhle Makhanya

To get exact solutions to Einstein’s field equations in general relativity, one has to impose some symmetry requirements. Otherwise, the equations are too difficult to solve. However, sometimes, the imposition of too much extra symmetry can cause the problem to become somewhat trivial. As a typical example to illustrate this, the effects of conharmonic flatness are studied and applied to Friedmann–Lemaitre–Robertson–Walker spacetime. Hence, we need to impose some symmetry to make the problem tractable, but not too much so as to make it too simple.


2005 ◽  
Vol 02 (02) ◽  
pp. 397-435 ◽  
Author(s):  
OSCAR REULA ◽  
OLIVIER SARBACH

In many numerical implementations of the Cauchy formulation of Einstein's field equations one encounters artificial boundaries which raises the issue of specifying boundary conditions. Such conditions have to be chosen carefully. In particular, they should be compatible with the constraints, yield a well posed initial-boundary value formulation and incorporate some physically desirable properties like, for instance, minimizing reflections of gravitational radiation. Motivated by the problem in General Relativity, we analyze a model problem, consisting of a formulation of Maxwell's equations on a spatially compact region of space–time with timelike boundaries. The form in which the equations are written is such that their structure is very similar to the Einstein–Christoffel symmetric hyperbolic formulations of Einstein's field equations. For this model problem, we specify a family of Sommerfeld-type constraint-preserving boundary conditions and show that the resulting initial-boundary value formulations are well posed. We expect that these results can be generalized to the Einstein–Christoffel formulations of General Relativity, at least in the case of linearizations about a stationary background.


2011 ◽  
Vol 42 (2) ◽  
pp. 224-240 ◽  
Author(s):  
C. Romero ◽  
J. B. Fonseca-Neto ◽  
M. L. Pucheu

Sign in / Sign up

Export Citation Format

Share Document