Syntheses of near infrared absorbed phthalocyanines to utilize photosensitizers

2013 ◽  
Vol 17 (08n09) ◽  
pp. 605-627 ◽  
Author(s):  
Keiichi Sakamoto ◽  
Satoru Yoshino ◽  
Makoto Takemoto ◽  
Naoki Furuya

Phthalocyanines have become of major interest as functional colorants for various applications. In order to use various applications especially photosensitizers, the absorption maxima called Q-band of phthalocyanines are required to be shifted to the near infrared region. Substituted phthalocyanine analog alkylbenzopiridoporphyrazins, especially zinc bis(1,4-didecylbenzo)-bis(3,4-pyrido)porphyrazine, and toroidal-shaped phthalocyanines having aminoamine dendric side chains such as toroidal zinc poly(aminoamine)phthalocyanine dendrons were synthesized. Phthalocyanines of two types reportedly use photosensitizers for photodynamic therapy of cancer. The respective efficacies of photodynamic therapy of cancer for zinc bis(1,4-didecylbenzo)-bis(3,4-pyrido)porphyrazine and its regioisomers were estimated using laser-flash photolysis. The capability of using photodynamic therapy for toroidal zinc poly(aminoamine)phthalocyanine dendrons was assessed using a cancer cell culture. Both phthalocyanines were suitable for the use as a photosensitizer as photodynamic therapy of cancer. Then, non-peripheral thioaryl substituted phthalocyanines, 1,4,8,11,15,18,22,25-octakis(thioaryl)phthalocyanines, such as 1,4,8,11,15,18,22,25-octakis(thiophenylmethyl)phthalocyanines, 1,4,8,11,15,18,22,25-octakis(thiophenylmethoxy)phthalocyanines, and 1,4,8,11,15,18,22,25-octakis(thiophenyl tert-butyl)phthalocyanines were also synthesized in order to develop next- generation photovoltaic cells and/or dye-sensitized solar cells. Non-peripheral substituted 1,4,8,11,15,18,22,25-octakis(thioaryl)phthalocyanines exhibited a Q-band in the near infrared region. Electrochemical measurements were performed on the above-mentioned 1,4,8,11,15,18,22,25-octakis(thioaryl)phthalocyanines described above to examine their electron transfer abilities and electrochemical mechanisms. The compounds 1,4,8,11,15,18,22,25-octakis(thioaryl)phthalocyanines are anticipated to be appropriate materials for use in the next generation of photovoltaic cells.

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Xixiang Xiao ◽  
Xiaobo Zhang ◽  
Haiyang Su ◽  
Shicheng Chen ◽  
Zhihui He ◽  
...  

Diatoms exhibit high solar energy harvesting efficiency due to their remarkably organized, hierarchical micro/nanoporous, light-trapping, and scattering frustules. At present, few studies focus on cosensitization of natural near-infrared dye to expand the spectral response of dye-sensitized solar cells. In this study, the diatom frustule-TiO2 (12 : 5) composite film was prepared and assembled it on the TiO2 electrode. Compared to the single TiO2 layer film, diatom frustule-TiO2 (12 : 5) composite film sensitized by diatom’s dye showed the conversion efficiency of 0.719%. To expand the light-harvesting response to near-infrared region spectra, the cosensitized dyes were used to fabricate the visible-near-infrared responsive dye-sensitized solar cells. The cosensitization diatom frustule-TiO2 (12 : 5) composite film exhibited two distinct absorption bands in the near-infrared region and reached a higher conversion efficiency of 1.321%, which was approximately 1.4 or 1.7 folds higher than that of cosensitization double-TiO2 film or single TiO2 layer film, respectively, and approximately 3.7 or 1.7 folds higher than that of the single TiO2 layer film sensitized by diatom dye or purple bacterial dye, respectively. The results showed that the combination between diatom frustule-TiO2 with cosensitization natural dyes could significantly improve the photoelectric performance of visible-near-infrared responsive dye-sensitized solar cells.


2020 ◽  
Vol 5 (9) ◽  
pp. 1477-1490 ◽  
Author(s):  
Md Abdus Sabuj ◽  
Neeraj Rai

Open-shell dyes with small diradical character (y < 0.10) lead to absorption in the near-infrared region.


2021 ◽  
Author(s):  
Abhineet Verma ◽  
Sk Saddam Hossain ◽  
Sailaja S Sunkari ◽  
Joseph Reibenspies ◽  
Satyen Saha

Lanthanides (LnIII) are well known for their characteristic emission in the Near-Infrared Region (NIR). However, direct excitation of lanthanides is not feasible as described by Laporte’s parity selection rule. Here,...


Author(s):  
Cong Shen ◽  
Yan Qing Zhu ◽  
Zixiao Li ◽  
Jingling Li ◽  
Hong Tao ◽  
...  

InP quantum dots (QDs) are considered as the most promising alternative to Cd-based QDs with the lower toxicity and emission spectrum tunability ranging from visible to near-infrared region. Although high-quality...


Sign in / Sign up

Export Citation Format

Share Document