Hydroxylamine-induced oxidation of ferrous CO-bound carboxymethylated-cytochrome c

2018 ◽  
Vol 22 (12) ◽  
pp. 1082-1091
Author(s):  
Paolo Ascenzi ◽  
Giovanna De Simone ◽  
Chiara Ciaccio ◽  
Roberto Santucci ◽  
Massimo Coletta

The hexa-coordinated metal center of horse heart cyt[Formula: see text] (cyt[Formula: see text] is at the root of its low reactivity. In contrast, carboxymethylated cyt[Formula: see text] (CM-cyt[Formula: see text] displays myoglobin-like properties. Herein, kinetics of CO binding to ferrous CM-cyt[Formula: see text] (CM-cyt[Formula: see text](II)) and of the irreversible oxidation of ferrous carbonylated CM-cyt[Formula: see text] (CM-cyt[Formula: see text](II)-CO) by hydroxylamine (HA), at pH 5.8 and 20.0 [Formula: see text]C, are reported. HA irreversibly oxidizes CM-cyt[Formula: see text](II)-CO with the 1:2 stoichiometry leading to the formation of the ferric species (CM-cyt[Formula: see text](III)) without the observation of intermediates. Present data indicate that: (i) the rate of CO dissociation from CM-cyt[Formula: see text](II)-CO represents the rate-limiting step of HA-mediated oxidation of the carbonylated metal center, (ii) the fast oxidation of CM-cyt[Formula: see text](II)-CO from HA reflects the penta-coordination of the transient CM-cyt[Formula: see text](II) species, (iii) the HA-catalyzed conversion of CM-cyt[Formula: see text](II)-CO to CM-cyt[Formula: see text](III) could proceed via the geminate mechanism, (iv) values of the second-order rate constants for the carbonylation and the HA-mediated oxidation of ferrous heme-proteins are linearly correlated reflecting the penta- or hexa-coordination of the metal center, the free energy for the in-plane positioning of the heme-Fe atom in the unliganded species, and the arrangement of the distal portion of the heme pocket that affects ligand and/or electron transfer.

1979 ◽  
Vol 44 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Vladimír Macháček ◽  
Said A. El-bahai ◽  
Vojeslav Štěrba

Kinetics of formation of 2-imino-4-thiazolidone from S-ethoxycarbonylmethylisothiouronium chloride has been studied in aqueous buffers and dilute hydrochloric acid. The reaction is subject to general base catalysis, the β value being 0.65. Its rate limiting step consists in acid-catalyzed splitting off of ethoxide ion from dipolar tetrahedral intermediate. At pH < 2 formation of this intermediate becomes rate-limiting; rate constant of its formation is 2 . 104 s-1.


1991 ◽  
Vol 56 (8) ◽  
pp. 1701-1710 ◽  
Author(s):  
Jaromír Kaválek ◽  
Vladimír Macháček ◽  
Miloš Sedlák ◽  
Vojeslav Štěrba

The cyclization kinetics of N-(2-methylcarbonylphenyl)-N’-methylsulfonamide (IIb) into 3-methyl-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (Ib) has been studied in ethanolamine, morpholine, and butylamine buffers and in potassium hydroxide solution. The cyclization is subject to general base and general acid catalysis. The value of the Bronsted coefficient β is about 0.1, which indicates that splitting off of the proton from negatively charged tetrahedral intermediate represents the rate-limiting and thermodynamically favourable step. In the solutions of potassium hydroxide the cyclization of dianion of the starting ester IIb probably becomes the rate-limiting step.


1975 ◽  
Vol 147 (3) ◽  
pp. 541-547 ◽  
Author(s):  
C J Dickenson ◽  
F M Dickinson

1. The kinetics of oxidation of butan-1-ol and propan-2-ol by NAD+, catalysed by yeast alcohol dehydrogenase, were studied at 25 degrees C from pH 5.5 to 10, and at pH 7.05 from 14 degrees to 44 degrees C, 2. Under all conditions studied the results are consistent with a mechanism whereby some dissociation of coenzyme from the active enzyme-NAD+-alcohol ternary complexes occurs, and the mechanism is therefore not strictly compulsory order. 3. A primary 2H isotopic effect on the maximum rates of oxidation of [1-2H2]butan-1-ol and [2H7]propan-2-ol was found at 25 degrees C over the pH range 5.5-10. Further, in stopped-flow experiments at pH 7.05 and 25 degrees C, there was no transient formation of NADH in the oxidation of butan-1-ol and propan-2-ol. The principal rate-limiting step in the oxidation of dependence on pH of the maximum rates of oxidation of butan-1-ol and propan-2-ol is consisten with the possibility that histidine and cysteine residues may affect or control catalysis.


1990 ◽  
Vol 55 (6) ◽  
pp. 1535-1540 ◽  
Author(s):  
Prerepa Manikyamba

Kinetics of oxidation of 1- and 2-acetylnaphthalenes by iodate in the presence of sulphuric acid in aqueous methanol has been studied. The reaction is first order with respect to both [iodate] and [acetylnaphthalene]. Solvent effect indicates a cation-dipole type of interaction in the rate limiting step. A mechanism is proposed with a slow attack of IO2+ on enol form of acetylnaphthalene forming an intermediate carbonium ion, which ultimately gives corresponding ω-hydroxyacetylnaphthalene. The higher reactivity of 2-acetyl isomer is attributed to the greater stability of the corresponding carbonium ion than that of 1-acetyl isomer.


1988 ◽  
Vol 53 (12) ◽  
pp. 3154-3163 ◽  
Author(s):  
Jiří Klicnar ◽  
Jaromír Mindl ◽  
Ivana Obořilová ◽  
Jaroslav Petříček ◽  
Vojeslav Štěrba

The reaction of 1,2-diaminobenzene with 2,3-butanedione is subject to general acid catalysis in acetate and phosphate buffers (pH 4-7). The rate-limiting step of formation of 2,3-dimethylquinoxaline consists in the protonation of dipolar tetrahedral intermediate. In the case of the reaction of 1,2-diaminobenzene with ethyl 2-oxopropanoate, the dehydration of carbinolamine gradually becomes rate-limiting with increasing pH in acetate buffers, whereas in phosphate buffers a new reaction pathway makes itself felt, viz. the formation of amide catalyzed by the basic buffer component and by hydroxide ion.


1993 ◽  
Vol 312 ◽  
Author(s):  
Robert S. Windeler ◽  
Robert F. Hicks

AbstractA mathematical model has been developed of the reactor used by Larsen et al. [1] to study the kinetics of gallium arsenide MOCVD.- Two different surface reactions were considered as the rate-limiting step in film growth below 500°C: (1) the desorption of methyl radicals from adsorbed trimethylgallium, and (2) the reaction of CH3 and H groups from adsorbed trimethylgallium and arsine to make methane. The latter step is consistent with the experimental results. It explains the rapid acceleration of the precursor decomposition rates when they are fed together to the reactor. It also explains why methane is the only hydrocarbon generated from trimethylgallium and arsine decomposition in deuterium at V/Ill ratios greater than 1.0.


Sign in / Sign up

Export Citation Format

Share Document