scholarly journals Mental States Follow Quantum Mechanics During Perception and Cognition of Ambiguous Figures

2009 ◽  
Vol 16 (01) ◽  
pp. 85-100 ◽  
Author(s):  
Elio Conte ◽  
Andrei Yuri Khrennikov ◽  
Orlando Todarello ◽  
Antonio Federici ◽  
Leonardo Mendolicchio ◽  
...  

Processes undergoing quantum mechanics exhibit quantum interference effects. In this case, quantum probabilities result to be different from classical ones because they contain an additional so-called quantum interference term. We use ambiguous figures to analyse if during perception-cognition by human subjects we can observe violation of the classical probability field and the presence of quantum interference. The experiments, conducted on a group of 256 subjects, evidence that we indeed have such a quantum effect. Therefore, mental states, during perception and cognition of ambiguous figures, appear to follow quantum mechanics.

2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years Man’ko and co-authors have successfully reconciled quantum and classical probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely that mathematically the interference term in the squared amplitude of superposed wavefunctions has the form of a variance of a sum of correlated random variables and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classical probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. This hidden generic variable appears to be such an archetype.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classical probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions has the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classical probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. This hidden generic variable appears to be such an archetype.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classical probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions has the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classical probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. This hidden generic variable appears to be such an archetype.


2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Gerard ’t Hooft

AbstractFast moving classical variables can generate quantum mechanical behavior. We demonstrate how this can happen in a model. The key point is that in classically (ontologically) evolving systems one can still define a conserved quantum energy. For the fast variables, the energy levels are far separated, such that one may assume these variables to stay in their ground state. This forces them to be entangled, so that, consequently, the slow variables are entangled as well. The fast variables could be the vacuum fluctuations caused by unknown super heavy particles. The emerging quantum effects in the light particles are expressed by a Hamiltonian that can have almost any form. The entire system is ontological, and yet allows one to generate interference effects in computer models. This seemed to lead to an inexplicable paradox, which is now resolved: exactly what happens in our models if we run a quantum interference experiment in a classical computer is explained. The restriction that very fast variables stay predominantly in their ground state appears to be due to smearing of the physical states in the time direction, preventing their direct detection. Discussions are added of the emergence of quantum mechanics, and the ontology of an EPR/Bell Gedanken experiment.


1994 ◽  
Vol 194-196 ◽  
pp. 1109-1110 ◽  
Author(s):  
M.E. Gershenson ◽  
P.M. Echternach ◽  
H.M. Bozler ◽  
A.L. Bogdanov ◽  
B. Nilsson

Sign in / Sign up

Export Citation Format

Share Document