scholarly journals On Quantum Algorithm for Binary Search and Its Computational Complexity

2015 ◽  
Vol 22 (03) ◽  
pp. 1550019 ◽  
Author(s):  
S. Iriyama ◽  
M. Ohya ◽  
I.V. Volovich

A new quantum algorithm for the search problem and its computational complexity are discussed. Its essential part is the use of the so-called chaos amplifier, [8, 9, 10, 13]. It is shown that for the search problem containing [Formula: see text] objects time complexity of the method is polynomial in [Formula: see text].

2007 ◽  
Vol 05 (04) ◽  
pp. 597-604 ◽  
Author(s):  
XIAO DI WU ◽  
GUI LU LONG

Unsorted database search problem is an important science and engineering problem. We proposed quantum algorithm to solve the problem by dividing the database binarily and then use a probabilistic verifier algorithm to determine if the item is within one part of the divided database. We analyzed the computational complexity of this algorithm, and found that in general, the number of steps is proportional to that in the standard Grover algorithm. However in some cases, it is less than that of the Grover algorithm.


2018 ◽  
Vol 61 (2) ◽  
pp. 251-269
Author(s):  
JONATHAN GRYAK ◽  
DELARAM KAHROBAEI ◽  
CONCHITA MARTINEZ-PEREZ

AbstractWe analyze the computational complexity of an algorithm to solve the conjugacy search problem in a certain family of metabelian groups. We prove that in general the time complexity of the conjugacy search problem for these groups is at most exponential. For a subfamily of groups, we prove that the conjugacy search problem is polynomial. We also show that for a different subfamily the conjugacy search problem reduces to the discrete logarithm problem.


2012 ◽  
Vol 22 (3) ◽  
pp. 521-531 ◽  
Author(s):  
G. ABAL ◽  
R. DONANGELO ◽  
M. FORETS ◽  
R. PORTUGAL

The spatial search problem consists of minimising the number of steps required to find a given site in a network, with the restriction that only an oracle query or a translation to a neighbouring site is allowed at each step. We propose a quantum algorithm for the spatial search problem on a triangular lattice with N sites and torus-like boundary conditions. The proposed algorithm is a special case of the general framework for abstract search proposed by Ambainis, Kempe and Rivosh (AKR) in Ambainis et al. (2005) and Tulsi in Tulsi (2008) applied to a triangular network. The AKR–Tulsi formalism was employed to show that the time complexity of the quantum search on the triangular lattice is $O(\sqrt{N \log N})$.


2010 ◽  
Vol 20 (6) ◽  
pp. 999-1009 ◽  
Author(s):  
G. ABAL ◽  
R. DONANGELO ◽  
F. L. MARQUEZINO ◽  
R. PORTUGAL

The spatial search problem consists of minimising the number of steps required to find a given site in a network under the restriction that only oracle queries or translations to neighbouring sites are allowed. We propose a quantum algorithm for the spatial search problem on a honeycomb lattice with N sites and torus-like boundary conditions. The search algorithm is based on a modified quantum walk on an hexagonal lattice and the general framework proposed by Ambainis, Kempe and Rivosh (Ambainis et al. 2005) is employed to show that the time complexity of this quantum search algorithm is $O(\sqrt{N \log N})$.


2016 ◽  
Vol 23 (03) ◽  
pp. 1650016 ◽  
Author(s):  
Jie Sun ◽  
Songfeng Lu ◽  
Fang Liu

The general class of models of adiabatic evolution was proposed to speed up the usual adiabatic computation in the case of quantum search problem. It was shown [8] that, by temporarily increasing the ground state energy of a time-dependent Hamiltonian to a suitable quantity, the quantum computation can perform the calculation in time complexity O(1). But it is also known that if the overlap between the initial and final states of the system is zero, then the computation based on the generalized models of adiabatic evolution can break down completely. In this paper, we find another severe limitation for this class of adiabatic evolution-based algorithms, which should be taken into account in applications. That is, it is still possible that this kind of evolution designed to deal with the quantum search problem fails completely if the interpolating paths in the system Hamiltonian are chosen inappropriately, while the usual adiabatic evolutions can do the same job relatively effectively. This implies that it is not always recommendable to use nonlinear paths in adiabatic computation. On the contrary, the usual simple adiabatic evolution may be sufficient for effective use.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Junghwan Song ◽  
Kwanhyung Lee ◽  
Hwanjin Lee

Biclique cryptanalysis is an attack which reduces the computational complexity by finding a biclique which is a kind of bipartite graph. We show a single-key full-round attack of the Crypton-256 and mCrypton-128 by using biclique cryptanalysis. In this paper, 4-round bicliques are constructed for Crypton-256 and mCrypton-128. And these bicliques are used to recover master key for the full rounds of Crypton-256 and mCrypton-128 with the computational complexities of 2253.78and 2126.5, respectively. This is the first known single-key full-round attack on the Crypton-256. And our result on the mCrypton-128 has superiority over known result of biclique cryptanalysis on the mCrypton-128 which constructs 3-round bicliques in terms of computational time complexity.


2012 ◽  
Vol 11 (04) ◽  
pp. 1250021 ◽  
Author(s):  
HE WEN ◽  
LASZLO B. KISH

Although noise-based logic shows potential advantages of reduced power dissipation and the ability of large parallel operations with low hardware and time complexity the question still persist: Is randomness really needed out of orthogonality? In this Letter, after some general thermodynamical considerations, we show relevant examples where we compare the computational complexity of logic systems based on orthogonal noise and sinusoidal signals, respectively. The conclusion is that in certain special-purpose applications noise-based logic is exponentially better than its sinusoidal version: Its computational complexity can be exponentially smaller to perform the same task.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zheng Wang ◽  
Shian-Shyong Tseng

Anomaly detection systems and many other applications are frequently confronted with the problem of finding the largest knee point in the sorted curve for a set of unsorted points. This paper proposes an efficient knee point search algorithm with minimized time complexity using the cascading top-ksorting when a priori probability distribution of the knee point is known. First, a top-ksort algorithm is proposed based on a quicksort variation. We divide the knee point search problem into multiple steps. And in each step an optimization problem of the selection numberkis solved, where the objective function is defined as the expected time cost. Because the expected time cost in one step is dependent on that of the afterwards steps, we simplify the optimization problem by minimizing the maximum expected time cost. The posterior probability of the largest knee point distribution and the other parameters are updated before solving the optimization problem in each step. An example of source detection of DNS DoS flooding attacks is provided to illustrate the applications of the proposed algorithm.


2021 ◽  
Vol 338 ◽  
pp. 68-81
Author(s):  
Shiri Morshtein ◽  
Ran Ettinger ◽  
Shmuel Tyszberowicz

Sign in / Sign up

Export Citation Format

Share Document