Boundary Element Algorithm for Nonlinear Modeling and Simulation of Three-Temperature Anisotropic Generalized Micropolar Piezothermoelasticity with Memory-Dependent Derivative

2020 ◽  
Vol 12 (03) ◽  
pp. 2050027 ◽  
Author(s):  
Mohamed Abdelsabour Fahmy

The main aim of this paper is to introduce a new memory-dependent derivative theory to contribute for increasing development of technological and industrial applications of anisotropic smart materials. This theory is called three-temperature anisotropic generalized micropolar piezothermoelasticity. The governing equations of the proposed theory are very difficult to solve analytically because of material anisotropy and its nonlinear properties. Therefore, we propose a new boundary element formulation for solving such equations. The efficiency of our proposed technique has been developed by using an adaptive smoothing and prolongation algebraic multigrid (aSP-AMG) preconditioner to reduce the computation time. The numerical results are presented highlighting the effects of the kernel function and time delay on the temperature and displacements. The numerical results also verify the validity and accuracy of the proposed methodology. It can be concluded from the numerical results of our current complex and general study that some well-known uncoupled, coupled and generalized theories of anisotropic micropolar piezothermoelasticity can be connected with the three-temperature radiative heat conduction to characterize the deformation of anisotropicmicropolar piezothermoelasticstructures in the context of memory-dependent derivative.

Author(s):  
Mohamed Abdelsabour Fahmy

The main objective of this chapter is to introduce a novel memory-dependent derivative (MDD) model based on the boundary element method (BEM) for solving transient three-temperature (3T) nonlinear thermal stress problems in functionally graded anisotropic (FGA) smart structures. The governing equations of the considered study are nonlinear and very difficult if not impossible to solve analytically. Therefore, we develop a new boundary element scheme for solving such equations. The numerical results are presented highlighting the effects of the MDD on the temperatures and nonlinear thermal stress distributions and also the effect of anisotropy on the nonlinear thermal stress distributions in FGA smart structures. The numerical results also verify the validity and accuracy of the proposed methodology. The computing performance of the proposed model has been performed using communication-avoiding Arnoldi procedure. We can conclude that the results of this chapter contribute to increase our understanding on the FGA smart structures. Consequently, the results also contribute to the further development of technological and industrial applications of FGA smart structures of various characteristics.


1995 ◽  
Vol 117 (3) ◽  
pp. 239-254 ◽  
Author(s):  
T. H. Kwon ◽  
C. S. Kim

A numerical modeling is proposed for the simulation of flow, heat transfer, and reaction kinetics during the compression molding of three-dimensional thin parts. A nonisothermal, non-Newtonian model including the kinetic equation for a curing mechanism of thermosetting materials is implemented in a computer program, and a finite element method is used to simulate a preheating, a filling, and a post-heating stage during the entire compression molding process. As a more rigorous approach, a moving boundary condition due to the drag motion of an upper mold of a nonplanar shape or due to an apparent slip phenomena of particle filled materials is introduced into the present modeling, resulting in a new governing equation and the corresponding finite element formulation. Verifications of the analysis program were performed with a simple geometry for the Newtonian and non-Newtonian isothermal cases, in which the numerical results are found to be in good agreement with theoretical results. Effects of the moving boundary condition and processing conditions, such as thickness of compression molded parts, mold closing velocity and the preheating stage on overall compression molding processing, are numerically investigated. Numerical results for a car fender are also presented as an example of industrial applications.


2020 ◽  
Vol 09 ◽  
Author(s):  
Ahmed M. Abu-Dief ◽  
W. S. Mohamed

Abstract:: Sustainability environmental lack is a growing and pivotal mater due to the issues: such as disturbances associated with biodiversity pollution, and climate change. Pollutants are the major cause of these environmental threats in the atmosphere. In recently, the nano-based photocatalyst is at the forefront of the author's interest because of its promising potential as a green chemical-based compound, high catalytic activity, the suitable and controllable surface area for wastewater treatment. Semiconductor materials in nanosized scale have electronic and optical properties depend on its building block size, which plays a vital role in developing smart materials that are well efficient for simultaneously destroying harmful chemical contaminants from our environment. This makes these materials used in many possible industrial applications such as water purification. In this Review, we report the most significant results contributing to progress in the area of environmental hazardous pollutant detection and removal focused on water purification especially through photo-catalysis to give readers an overview of the present research trends. Moreover, we analyze previous studies to indicate key principles of photo-catalysis and provide guidelines that can be used to fabricate more efficient photocatalysts.


Author(s):  
Mohamed Abdelsabour Fahmy

AbstractThe main aim of this article is to develop a new boundary element method (BEM) algorithm to model and simulate the nonlinear thermal stresses problems in micropolar functionally graded anisotropic (FGA) composites with temperature-dependent properties. Some inside points are chosen to treat the nonlinear terms and domain integrals. An integral formulation which is based on the use of Kirchhoff transformation is firstly used to simplify the transient heat conduction governing equation. Then, the residual nonlinear terms are carried out within the current formulation. The domain integrals can be effectively treated by applying the Cartesian transformation method (CTM). In the proposed BEM technique, the nonlinear temperature is computed on the boundary and some inside domain integral. Then, nonlinear displacement can be calculated at each time step. With the calculated temperature and displacement distributions, we can obtain the values of nonlinear thermal stresses. The efficiency of our proposed methodology has been improved by using the communication-avoiding versions of the Arnoldi (CA-Arnoldi) preconditioner for solving the resulting linear systems arising from the BEM to reduce the iterations number and computation time. The numerical outcomes establish the influence of temperature-dependent properties on the nonlinear temperature distribution, and investigate the effect of the functionally graded parameter on the nonlinear displacements and thermal stresses, through the micropolar FGA composites with temperature-dependent properties. These numerical outcomes also confirm the validity, precision and effectiveness of the proposed modeling and simulation methodology.


2002 ◽  
Vol 124 (4) ◽  
pp. 988-993 ◽  
Author(s):  
V. Esfahanian ◽  
M. Behbahani-nejad

An approach to developing a general technique for constructing reduced-order models of unsteady flows about three-dimensional complex geometries is presented. The boundary element method along with the potential flow is used to analyze unsteady flows over two-dimensional airfoils, three-dimensional wings, and wing-body configurations. Eigenanalysis of unsteady flows over a NACA 0012 airfoil, a three-dimensional wing with the NACA 0012 section and a wing-body configuration is performed in time domain based on the unsteady boundary element formulation. Reduced-order models are constructed with and without the static correction. The numerical results demonstrate the accuracy and efficiency of the present method in reduced-order modeling of unsteady flows over complex configurations.


1999 ◽  
Vol 36 (24) ◽  
pp. 3617-3638 ◽  
Author(s):  
R. García ◽  
J. Flórez-López ◽  
M. Cerrolaza

Sign in / Sign up

Export Citation Format

Share Document