Development of Nanomaterials as Photo Catalysts for Environmental Applications

2020 ◽  
Vol 09 ◽  
Author(s):  
Ahmed M. Abu-Dief ◽  
W. S. Mohamed

Abstract:: Sustainability environmental lack is a growing and pivotal mater due to the issues: such as disturbances associated with biodiversity pollution, and climate change. Pollutants are the major cause of these environmental threats in the atmosphere. In recently, the nano-based photocatalyst is at the forefront of the author's interest because of its promising potential as a green chemical-based compound, high catalytic activity, the suitable and controllable surface area for wastewater treatment. Semiconductor materials in nanosized scale have electronic and optical properties depend on its building block size, which plays a vital role in developing smart materials that are well efficient for simultaneously destroying harmful chemical contaminants from our environment. This makes these materials used in many possible industrial applications such as water purification. In this Review, we report the most significant results contributing to progress in the area of environmental hazardous pollutant detection and removal focused on water purification especially through photo-catalysis to give readers an overview of the present research trends. Moreover, we analyze previous studies to indicate key principles of photo-catalysis and provide guidelines that can be used to fabricate more efficient photocatalysts.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2091
Author(s):  
Angela Spoială ◽  
Cornelia-Ioana Ilie ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
Ecaterina Andronescu

During the past few years, researchers have focused their attention on developing innovative nanocomposite polymeric membranes with applications in water purification. Natural and synthetic polymers were considered, and it was proven that chitosan-based materials presented important features. This review presents an overview regarding diverse materials used in developing innovative chitosan-based nanocomposite polymeric membranes for water purification. The first part of the review presents a detailed introduction about chitosan, highlighting the fact that is a biocompatible, biodegradable, low-cost, nontoxic biopolymer, having unique structure and interesting properties, and also antibacterial and antioxidant activities, reasons for using it in water treatment applications. To use chitosan-based materials for developing nanocomposite polymeric membranes for wastewater purification applications must enhance their performance by using different materials. In the second part of the review, the performance’s features will be presented as a consequence of adding different nanoparticles, also showing the effect that those nanoparticles could bring on other polymeric membranes. Among these features, pollutant’s retention and enhancing thermo-mechanical properties will be mentioned. The focus of the third section of the review will illustrate chitosan-based nanocomposite as polymeric membranes for water purification. Over the last few years, researchers have demonstrated that adsorbent nanocomposite polymeric membranes are powerful, important, and potential instruments in separation or removal of pollutants, such as heavy metals, dyes, and other toxic compounds presented in water systems. Lastly, we conclude this review with a summary of the most important applications of chitosan-based nanocomposite polymeric membranes and their perspectives in water purification.


2020 ◽  
Vol 1008 ◽  
pp. 33-38
Author(s):  
Marwa Nabil ◽  
Hussien A. Motaweh

Silica is one of the most important materials used in many industries. The basic factor on which the selection process depends is the structural form, which is dependent on the various physical and chemical properties. One of the common methods in preparing pure silica is that it needs more than one stage to ensure the preparation process completion. The goal of this research is studying the nucleation technique (Bottom-top) for micro-wires and micro-ribbons silica synthesis. The silica nanoand microstructures are prepared using a duality (one step); a combination of alkali chemical etching process {potassium hydroxide (3 wt %) and n-propanol (30 Vol %)} and the ultra-sonication technique. In addition, the used materials in the preparation process are environmentally friendly materials that produce no harmful residues. The powder product is characterized using XRD, FTIR, Raman spectrum and SEM for determining the shape of architectures. The most significant factor of the nucleation mechanism is the sonication time of silica powder production during the dual technique. The product stages are as follows; silica nanoparticles (21-38 nm), nanoclusters silica (46 – 67 nm), micro-wires silica (1.17 – 6.29 μm), and micro-ribbons silica (19.4 – 54.1 μm). It's allowing for use in environmental applications (multiple wastewater purification, multiple uses in air filters, as well as many industrial applications).


Author(s):  
Jian Xiong ◽  
Ailin Li ◽  
Ye Liu ◽  
Liming Wang ◽  
Xiaohong Qin ◽  
...  

Integrating metal-organic frameworks (MOFs) into flexible polymeric matrices can improve their practical processibility and enlarge industrial applications greatly. However, current methods suffer from the serious aggregation of MOFs, low MOF...


2018 ◽  
Vol 877 ◽  
pp. 294-298 ◽  
Author(s):  
Kundan Patel ◽  
Jay Patel ◽  
Piyush Gohil ◽  
Vijaykumar Chaudhary

Composite materials play a vital role in many industrial applications. Researchers are working on fabrication of new composite materials worldwide to enhance the applicability of these materials. The present study aimed to investigate the effect of Nano clay loading as filler on the mechanical properties of the bamboo fiber yarn reinforced polyester composite. Five different types of composite specimen were prepared with Nano clay loadings of 0 to 4 % weight fraction using hand lay-up technique. It was observed that the composite sheet with 1 wt % nano clay content exhibited the optimized tensile and flexural strength. However the mechanical properties tend to decrease with addition of nano clay content from 2 to 4 wt %. In spite of that the values of mechanical properties with 2 and 3 wt % nano clay content is higher than 0 wt % nano clay content.


Soil strength plays a vital role in the construction field. The main purpose of this project is to stabilize red soil with the help of various waste materials. The waste materials used are rice husk ash, lime, ground granulated blast furnace slag and coconut coir fiber. These waste materials have been mixed with the soil in the ratio 10%, 20% and 30% and subjected to various tests Specific Gravity Test, Sieve Analysis Test, Plasticity Index Test, Standard Proctor Test, Unconfined Compression test and California Bearing ratio test. A comparative increase in soil strength was found with all the waste materials. Thus, ultimately the soil is stabilized with the help of these waste materials.


2016 ◽  
Vol 17 (3) ◽  
pp. 277-285 ◽  
Author(s):  
Tejinder Singh Saggu ◽  
Lakhwinder Singh

Abstract Induction furnaces are used in wide quantity under different capacities for annual production of around 25 million tons of iron and steel in India. It plays a vital role in various manufacturing processes around the world for melting different types of metal scraps i. e. Copper, Cast Iron, Aluminium, Steel, Brass, Bronze, Silicon, Gold, Silver etc. which are further used in many other industrial applications. The induction furnace causes a huge disturbance to the utility and nearby consumers during its operation due to its non-linear characteristics. This is a serious phenomenon responsible for power quality degradation in the power system. This paper presents methodology to improve the power quality degradation caused by induction furnace using Dynamic Voltage Restorer (DVR) which is a type of custom power device. The real time data has been taken from an industry employing induction furnace for production of ingots from scrap material. The experimental readings are measured using power quality analyser equipment. The simulation of whole plant is done by analysing this same data and the simulation results are compared with actual onsite results. Then, solution methodology using DVR is presented which revealed that the implementation of DVR is an effective solution for voltage sag mitigation and harmonics improvement in induction furnace.


2021 ◽  
Author(s):  
Gloria Fernandez-Lorente ◽  
Daniela Remonatto ◽  
J. Vladimir Oliveira ◽  
J. Manuel Guisan ◽  
Débora Oliveira ◽  
...  

Abstract Lipases are an important group of biocatalysts for many industrial applications. Two new commercial low-cost lipases Eversa® Transform and Eversa® Transform 2.0 was immobilized on four different hydrophobic supports: Lewatit-DVB, Purolite-DVB, Sepabeads-C18, and Purolite-C18. The performance of immobilized lipases was investigated in the transesterification of sunflower oil solvent-free in an anhydrous medium. Interesting results were obtained for both lipases and the four supports, but with Sepabeads support the lipases Eversa showed high catalytic activity. However, the more stable and efficient derivative was Eversa® Transform immobilized on Sepabeads C-18. A 98 wt% of ethyl ester of fatty acid (FAEE) was obtained, in 3 hours at 40ºC, ethanol/sunflower oil molar ratio of 3:1 and a 10 wt% of the immobilized biocatalyst. After 6 reaction cycles, the immobilized biocatalyst preserved 70 wt% of activity. Both lipases immobilized in Sepabeads C-18 were highly active and stable in the presence of ethanol. The immobilization of Eversa Transform and Eversa Transform 2.0 in hydrophobic supports described in this study appears to be a promising alternative to the immobilization and application of these news lipases still unexplored.


2021 ◽  
Vol 35 (04) ◽  
pp. 2150057
Author(s):  
Qunfeng Zeng ◽  
Khashayar Khanlari ◽  
Naiming Lin

Equiatomic and near equiatomic NiTi alloys, showing good mechanical and thermal shape memory properties, are widely exploited in different industrial applications. In addition, NiTi alloys have promising anti-cavitation and corrosion-resistance properties. These advantages have provided opportunities to exploit NiTi alloys as the coatings for protecting materials used in the industrial applications. This study is a preliminary investigation aiming to evaluate the feasibility to form NiTi alloy coatings on SS304 steel by tungsten inert argon arc welding (TIG) technology. The microstructure analysis shows that the crystalline phases in NiTi coatings on SS 304 steel are TiNi-B2, TiNi-B19’ and Ni3Ti. The potential of the NiTi coatings to enhance the corrosion resistance and cavitation resistance behaviors of steel exposed to seawater is studied. NiTi coatings, with two different thicknesses of about 1.2 and 2 mm, having homogenous microstructures were successfully deposited on SS304 steel using TIG technology. Results of tests, done in aqueous solutions simulating seawater, showed that the formation of the oxide films on the surface of NiTi coatings increased the corrosion resistance and wear resistance and decreased the damage caused by the cavitation. Moreover, it was understood that the NiTi coatings with 2 mm in thickness show the superior performances than those with 1.2 mm in thickness. The tribological mechanisms responsible for the unique properties of NiTi alloy coatings were investigated. The wear-resistance behaviors of NiTi alloy coatings are greatly influenced by the friction conditions. Increasing load decreased CoF and the wear rate of the coatings were almost constant, which was attributed to the pseudoelasticity of NiTi alloy. The attractive properties of NiTi alloys that makes it most influential materials for industrial applications have also been discussed.


2021 ◽  
pp. 009524432110386
Author(s):  
Mousumi De Sarkar ◽  
Takashi Sunada ◽  
Atsunori Kondo

The curing system plays a vital role in designing rubber compounds for various industrial applications. Therefore, it is paramount to establish viable curing strategies for any new elastomer to explore its application potentials and commercial significance. Impacts of different curing regimes on the properties of a recently developed copolymer of chloroprene and acrylonitrile (acrylonitrile-chloroprene rubber, NCR) are reported here. Several primary accelerators (four from thiourea- and one from thiazolene product families) were used for curing the new rubber along with fixed loadings of zinc oxide (5 phr) and magnesium oxide (4 phr). Besides, curatives based on sulfur and peroxide were also evaluated. The influence of different curing systems on the rheological and physical properties of the copolymer was explored. It has been seen that the properties of the copolymer are considerably influenced by the different curing systems used. While ethylene thiourea (ETU) and propylene thiourea (PTU), as primary accelerators, provide the highest state of cure but may cause scorch. The use of trimethyl thiourea (TMU), on the other hand, results in the fastest rate and the most stable state of cure, good scorch safety, bin stability, and an overall good balance of properties. The sulfur-based crosslinking system induces good mechanical properties but causes limited bin stability, poor high-temperature compression set, and impaired heat resistance properties. As a curing agent, peroxide delivers the best bin stability in the rubber stocks but yields higher stiffness and limited aging resistance in the vulcanizates.


Sign in / Sign up

Export Citation Format

Share Document