Nonlinear Forced Vibration of Spinning Pipes Conveying Fluid under Lateral Harmonic Excitation

Author(s):  
Feng Liang ◽  
An Gao ◽  
Yao Chen ◽  
Yu Qian
Author(s):  
Zia Saadatnia ◽  
Ebrahim Esmailzadeh ◽  
Davood Younesian

Nonlinear forced vibration of fluid-conveying nanotubes based on Euler-Bernoulli beam theory under electromagnetic actuation is studied. The nanotube is modeled as cantilever type beam and the effects of fluid motion and external harmonic excitation are considered in the governing equation of the structure vibration. The Galerkin procedure is applied in order to discretize the governing equation of vibration of the system. The well-known multiple scales method is utilized to investigate the primary resonance in the forced vibration of nanotubes. The effects of various parameters, namely, fluid velocity, position of applied force, aspect ratio and electromagnetic excitation on the primary resonance of the system are fully investigated. It is revealed that the electromagnetic excitation is highly influential on the frequency response of the considered system.


2021 ◽  
Vol 37 ◽  
pp. 318-326
Author(s):  
Yuzhen Zhao ◽  
Dike Hu ◽  
Song Wu ◽  
Xinjun Long ◽  
Yongshou Liu

Abstract In this paper, the dynamics of axially functionally graded (AFG) conical pipes conveying fluid are analyzed. The materials are distributed along the conical pipe axis as a volume fraction function. Either the elastic modulus or the density of the AFG conical pipe is assumed to vary from the inlet to the outlet. The governing equation of the AFG conical pipe is derived using the Hamiltonian principle and solved by the differential quadrature method. The effects of the volume fraction index, volume fraction function type and reduction factor on the natural frequency and critical velocity are analyzed. It is found that for a power function volume fraction type, the natural frequency and critical velocity increase with increasing volume fraction index and clearly increase when the volume fraction index is within the range (0, 10). For an exponential function volume fraction type, the natural frequency and critical velocity change rapidly within the range (−10, 10), besides the above range the relationship between the natural frequency, critical velocity and volume fraction index is approximate of little change. The natural frequency and critical velocity decrease linearly with increasing reduction factor.


Sign in / Sign up

Export Citation Format

Share Document