A study of fuzzy methods for solving system of fuzzy differential equations

Author(s):  
M. Keshavarz ◽  
T. Allahviranloo ◽  
S. Abbasbandy ◽  
M. H. Modarressi

This paper is devoted to obtain an analytical solution for first-order fuzzy differential equations and system of fuzzy differential equations by different methods by considering the type of generalized Hukuhara differentiability of a solution and without embedding them to crisp equations. Moreover, the fuzzy solutions of a second-order fuzzy differential equation by considering the type of differentiability are obtained using reduction to a system of fuzzy differential equations. The effectiveness and efficiency of the approaches are illustrated by solving several practical examples such as Newton’s law of cooling, the mathematical models for the distribution of a drug in the human body and the fuzzy forced harmonic oscillator problem.

2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


2020 ◽  
Vol 69 (1) ◽  
pp. 7-11
Author(s):  
A.K. Abirov ◽  
◽  
N.K. Shazhdekeeva ◽  
T.N. Akhmurzina ◽  
◽  
...  

The article considers the problem of solving an inhomogeneous first-order differential equation with a variable with a constant coefficient in a hypercomplex system. The structure of the solution in different cases of the right-hand side of the differential equation is determined. The structure of solving the equation in the case of the appearance of zero divisors is shown. It turns out that when the component of a hypercomplex function is a polynomial of an independent variable, the differential equation turns into an inhomogeneous system of real variables from n equations and its solution is determined by certain methods of the theory of differential equations. Thus, obtaining analytically homogeneous solutions of inhomogeneous differential equations in a hypercomplex system leads to an increase in the efficiency of modeling processes in various fields of science and technology.


2021 ◽  
Vol 5 (2) ◽  
pp. 579-583
Author(s):  
Muhammad Abdullahi ◽  
Bashir Sule ◽  
Mustapha Isyaku

This paper is aimed at deriving a 2-point zero stable numerical algorithm of block backward differentiation formula using Taylor series expansion, for solving first order ordinary differential equation. The order and zero stability of the method are investigated and the derived method is found to be zero stable and of order 3. Hence, the method is suitable for solving first order ordinary differential equation. Implementation of the method has been considered


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammad Zamani Nejad ◽  
Mehdi Jabbari ◽  
Mehdi Ghannad

Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided intondisks,nsets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.


2020 ◽  
Vol 98 (7) ◽  
pp. 683-688
Author(s):  
Smail Bougouffa ◽  
Lazhar Bougoffa

In this paper, we illustrate the use of the method of the characteristics in various dissipative models of a single harmonic oscillator. The master equation governing the process can be transformed to a partial differential equation on the Wigner distribution, which in turn can be split to a system of coupled differential equations. We present a useful technique that can be used to separate the system without increasing the order and then the solutions can be obtained. The obtained solutions are used to calculate the average of energy observable of the system. This procedure can be extended to solve some other complex similar problems.


1863 ◽  
Vol 12 ◽  
pp. 420-424

Jacobi in a posthumous memoir, which has only this year appeared, has developed two remarkable methods (agreeing in their general character, but differing in details) of solving non-linear partial differential equations of the first order, and has applied them in connexion with that theory of the differential equations of dynamics which was established by Sir W. R. Hamilton in the 'Philosophical Transactions’ for 1834-35. The knowledge, indeed, that the solution of the equation of a dynamical problem is involved in the discovery of a single central function, defined by a single partial differential equation of the first order, does not appear to have been hitherto (perhaps it will never be) very fruitful in practical results.


1999 ◽  
Vol 22 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Jong Yeoul Park ◽  
Hyo Keun Han

By using the method of successive approximation, we prove the existence and uniqueness of a solution of the fuzzy differential equationx′(t)=f(t,x(t)),x(t0)=x0. We also consider anϵ-approximate solution of the above fuzzy differential equation.


1985 ◽  
Vol 5 (3) ◽  
pp. 437-443 ◽  
Author(s):  
R. Rudnicki

AbstractWe prove that the dynamical systems generated by first order partial differential equations are K-flows and chaotic in the sense of Auslander & Yorke.


1987 ◽  
Vol 35 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Renfrey B. Potts

The Weierstrass elliptic function satisfies a nonlinear first order and a nonlinear second order differential equation. It is shown that these differential equations can be discretized in such a way that the solutions of the resulting difference equations exactly coincide with the corresponding values of the elliptic function.


Sign in / Sign up

Export Citation Format

Share Document