scholarly journals Period and toroidal knot mosaics

2017 ◽  
Vol 26 (05) ◽  
pp. 1750031 ◽  
Author(s):  
Seungsang Oh ◽  
Kyungpyo Hong ◽  
Ho Lee ◽  
Hwa Jeong Lee ◽  
Mi Jeong Yeon

Knot mosaic theory was introduced by Lomonaco and Kauffman in the paper on ‘Quantum knots and mosaics’ to give a precise and workable definition of quantum knots, intended to represent an actual physical quantum system. A knot [Formula: see text]-mosaic is an [Formula: see text] matrix whose entries are eleven mosaic tiles, representing a knot or a link by adjoining properly. In this paper, we introduce two variants of knot mosaics: period knot mosaics and toroidal knot mosaics, which are common features in physics and mathematics. We present an algorithm producing the exact enumeration of period knot [Formula: see text]-mosaics for any positive integers [Formula: see text] and [Formula: see text], toroidal knot [Formula: see text]-mosaics for co-prime integers [Formula: see text] and [Formula: see text], and furthermore toroidal knot [Formula: see text]-mosaics for a prime number [Formula: see text]. We also analyze the asymptotics of the growth rates of their cardinality.

2017 ◽  
Vol 26 (05) ◽  
pp. 1750032 ◽  
Author(s):  
Kyungpyo Hong ◽  
Seungsang Oh

Since the Jones polynomial was discovered, the connection between knot theory and quantum physics has been of great interest. Lomonaco and Kauffman introduced the knot mosaic system to give a definition of the quantum knot system that is intended to represent an actual physical quantum system. Recently the authors developed an algorithm producing the exact enumeration of knot mosaics, which uses a recursion formula of state matrices. As a sequel to this research program, we similarly define the (embedded) graph mosaic system by using 16 graph mosaic tiles, representing graph diagrams with vertices of valence 3 and 4. We extend the algorithm to produce the exact number of all graph mosaics. The magnified state matrix that is an extension of the state matrix is mainly used.


2014 ◽  
Vol 23 (13) ◽  
pp. 1450069 ◽  
Author(s):  
Hwa Jeong Lee ◽  
Kyungpyo Hong ◽  
Ho Lee ◽  
Seungsang Oh

Lomonaco and Kauffman developed knot mosaics to give a definition of a quantum knot system. This definition is intended to represent an actual physical quantum system. A knot n-mosaic is an n × n matrix of 11 kinds of specific mosaic tiles representing a knot or a link. The mosaic number m(K) of a knot K is the smallest integer n for which K is representable as a knot n-mosaic. In this paper, we establish an upper bound on the mosaic number of a knot or a link K in terms of the crossing number c(K). Let K be a nontrivial knot or a non-split link except the Hopf link. Then m(K) ≤ c(K) + 1. Moreover if K is prime and non-alternating except [Formula: see text] link, then m(K) ≤ c(K) - 1.


2018 ◽  
Vol 14 (08) ◽  
pp. 2239-2256
Author(s):  
Hai-Liang Wu

For each integer [Formula: see text], let [Formula: see text] denote the generalized [Formula: see text]-gonal number [Formula: see text] with [Formula: see text]. Given positive integers [Formula: see text] and an odd prime number [Formula: see text] with [Formula: see text], we employ the theory of ternary quadratic forms to determine completely when the mixed sum [Formula: see text] represents all but finitely many positive integers.


2014 ◽  
Vol 23 (13) ◽  
pp. 1450065 ◽  
Author(s):  
Kyungpyo Hong ◽  
Seungsang Oh ◽  
Ho Lee ◽  
Hwa Jeong Lee

Lomonaco and Kauffman introduced a knot mosaic system to give a definition of a quantum knot system which can be viewed as a blueprint for the construction of an actual physical quantum system. A knot n-mosaic is an n × n matrix of 11 kinds of specific mosaic tiles representing a knot or a link by adjoining properly that is called suitably connected. Dn denotes the total number of all knot n-mosaics. Already known is that D1 = 1, D2 = 2 and D3 = 22. In this paper we establish the lower and upper bounds on Dn[Formula: see text] and find the exact number of D4 = 2594.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Luis Manuel Sanchez Ruiz ◽  
Sanjib Kumar Datta ◽  
Tanmay Biswas ◽  
Golok Kumar Mondal

We discuss some growth rates of composite entire functions on the basis of the definition of relativep,qth order (relativep,qth lower order) with respect to another entire function which improve some earlier results of Roy (2010) wherepandqare any two positive integers.


1973 ◽  
Vol 28 (2) ◽  
pp. 206-215
Author(s):  
Hanns Ruder

Basic in the treatment of collective rotations is the definition of a body-fixed coordinate system. A kinematical method is derived to obtain the Hamiltonian of a n-body problem for a given definition of the body-fixed system. From this exact Hamiltonian, a consequent perturbation expansion in terms of the total angular momentum leads to two exact expressions: one for the collective rotational energy which has to be added to the groundstate energy in this order of perturbation and a second one for the effective inertia tensor in the groundstate. The discussion of these results leads to two criteria how to define the best body-fixed coordinate system, namely a differential equation and a variational principle. The equivalence of both is shown.


Author(s):  
ALEXANDER GRISHKOV ◽  
LIUDMILA SABININA ◽  
EFIM ZELMANOV

Abstract We prove that for positive integers $m \geq 1, n \geq 1$ and a prime number $p \neq 2,3$ there are finitely many finite m-generated Moufang loops of exponent $p^n$ .


Author(s):  
Roger S. Miles

SynopsisThe holotype and only known specimen of Rhachiosteus pterygiatus Gross is partially redescribed and new restorations are given. Attention is drawn to important points in its osteology and the possible development of a cutaneous sensory system. A definition of the family Rhachiosteidsæ Stensiö is given. This family differs from all other described groups of euarthrodires in the lack of posterior lateral and posterior dorsolateral flank plates. Rhachiosteus is a pachyosteomorph brachythoracid, as defined in the text, and may be fairly closely related in some way to the (coccosteomorph) family Coccosteidsæ. There is no indication that it is closely related to any other known pachyosteomorph, or to other groups of arthrodires, such as the Rhenanida and Ptyctodontida, in which there are no posterior flank plates.


2013 ◽  
Vol 09 (07) ◽  
pp. 1841-1853 ◽  
Author(s):  
B. K. MORIYA ◽  
C. J. SMYTH

We evaluate [Formula: see text] for a certain family of integer sequences, which include the Fourier coefficients of some modular forms. In particular, we compute [Formula: see text] for all positive integers n for Ramanujan's τ-function. As a consequence, we obtain many congruences — for instance that τ(1000m) is always divisible by 64000. We also determine, for a given prime number p, the set of n for which τ(pn-1) is divisible by n. Further, we give a description of the set {n ∈ ℕ : n divides τ(n)}. We also survey methods for computing τ(n). Finally, we find the least n for which τ(n) is prime, complementing a result of D. H. Lehmer, who found the least n for which |τ(n)| is prime.


2021 ◽  
Vol 4 (4) ◽  
pp. 99-136
Author(s):  
Ibrahiem Mohammed Abdullah ◽  

The research paper aims to highlight the STEM approach as one of the modern integrated approaches in the field of mathematics education. STEM which means the integration of Science, Technology, Engineering, and Math has its significant role in the development of curricula in the Arab world generally and particularly in mathematics curricula. This paper addresses the definition of STEM, the justifications for its emergence and the causes for the attention it recently receives. Moreover, the paper sheds light on its objectives, content, related teaching strategies, educational activities, evaluation, characteristics, advantages and obstacles found in its application.


Sign in / Sign up

Export Citation Format

Share Document