Study of Methylene Blue Interaction with Human Serum Albumin

2019 ◽  
Vol 14 (01) ◽  
pp. 17-25 ◽  
Author(s):  
Poghos O. Vardevanyan ◽  
Ara P. Antonyan ◽  
Marine A. Parsadanyan ◽  
Mariam A. Shahinyan ◽  
Marieta S. Mikaelyan

The thiosine dye methylene blue (MB) interaction with human serum albumin (HSA) has been studied. MB was revealed to stabilize the native structure of HSA, since the denaturation temperature of the complexes is shifted to higher values in relation to that of the pure protein. It was also revealed that the absorption spectra of the complexes do not change noticeably, while in the fluorescence spectra the maximal intensity of MB decreases with the albumin concentration enhancement. Analysis of the obtained data allows to conclude that the main binding mode of MB to HSA, providing the stabilization of the protein native structure, is the electrostatic mechanism.

2019 ◽  
Vol 17 (1) ◽  
pp. 806-812
Author(s):  
Liangliang Liu ◽  
Yi Liu ◽  
Aiping Xiao ◽  
Shiyong Mei ◽  
Yixi Xie

AbstractIncreasing the degree of glycation in diabetes could affect the ability of plasma proteins in binding to small molecules and active compounds. In this study, the influence of glycation of Human serum albumin (HSA) on the binding affinities for six dietary flavonoids was investigated by fluorescence spectra. Glycated HSA was prepared through incubation with glucose and characterized by several methods to confirm the glycation. It was found that the level of glycation increased with the increasing incubation time. The glycation of HSA increased the binding affinities for flavonoids by 1.40 to 48.42 times, which indicates that modifications caused by the glycation may have different influences on the interactions of flavonoids with HSA at separate binding sites on this protein. These results are valuable for understanding the influence of diabetes on the metabolism of flavonoids and other bioactive small molecules in human body.


2019 ◽  
Vol 33 (17) ◽  
pp. 2317-2327
Author(s):  
Mariam A. Shahinyan ◽  
Ara P. Antonyan ◽  
Vitali P. Kalantaryan ◽  
Marieta S. Mikaelyan ◽  
Poghos O. Vardevanyan

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S631-S632
Author(s):  
Jun Sakai

Abstract Background Candida auris is commonly detected in human ear secretions. However, C. auris occasionally causes bloodstream infections even in immunocompetent patients resulting in poor prognosis. It was speculated that C. auris growth within the blood might be regulated by proteins in the bloodstream. Thus, in this study, the potential role of blood proteins in the regulation of C. auris growth was investigated. Methods Five Candida species (C. albicans, C. auris, C. glabrata, C. parapsilosis, and C. tropicalis) were incubated overnight. Colony suspensions for each species were prepared and adjusted to OD 1.0 at absorbance 0.1. Then, human serum albumin (HSA) and bovine serum albumin (BSA) were diluted (2.5 g/dL–0.002 g/dL) and mixed with the suspensions. Mixed samples were adjusted to 100 μL and incubated on MHA plates at 35°C for 2 days. Then, 50 μL of the combined sample was extracted and streaked onto Yeast extract-Peptone-Dextrose (YPD) agar. The remaining 50 μL sample was analyzed using an XTT assay. Further testing was then conducted on the effects of a specific blood protein albumin on Candida. Thereby, C. albicans and C. auris were cultured following the procedure above and stained with Annexin V and PI. Results The growth of C. auris mixed with a high albumin concentration (2.5~0.15 g/dL) was regulated compared with that of other Candida species (P < 0.01) (Figures 1 and 2); however, the growth of C. auris mixed with a lower albumin concentration was similar to that of other species. The wash-out study showed that C. auris growth and survival in the high albumin concentration was not different than that of other species. Conclusion HSA and BSA regulated C. auris growth which led to increased necrosis of C. auris. Conversely, growth of the other Candida species was not regulated. Therefore, albumin might be involved in the growth and necrosis of C. auris. As the highest concentration at which albumin regulated C. auris growth was similar to that found in human serum, it is possible that serum albumin might help prevent C. auris from entering the bloodstream via the ear or skin. Disclosures All authors: No reported disclosures.


2005 ◽  
Vol 39 (3-4) ◽  
pp. 740-745 ◽  
Author(s):  
Yan-Jun Hu ◽  
Wei Li ◽  
Yi Liu ◽  
Jia-Xin Dong ◽  
Song-Sheng Qu

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hideto Isogai ◽  
Noriaki Hirayama

Since binding of a drug molecule to human serum albumin (HSA) significantly affects the pharmacokinetics of the drug, it is highly desirable to predict the binding affinity of the drug. Profen drugs are a widely used class of nonsteroidal anti-inflammatory drugs and it has been reported that several members of the profen class specifically bind to one of the main binding sites named site II. The actual binding mode of only ibuprofen has been directly confirmed by X-ray crystallography. Therefore, it is of interest whether other profen drugs are site II binders. Docking simulations using multiple template structures of HSA from three crystal structures of complexes between drugs and HSA have demonstrated that most of the currently available profen drugs should be site II binders.


2016 ◽  
Vol 48 (6) ◽  
Author(s):  
Dmitry N. Artemyev ◽  
Valery P. Zakharov ◽  
Igor L. Davydkin ◽  
Julia A. Khristoforova ◽  
Anastasia A. Lykina ◽  
...  

2010 ◽  
Vol 24 (5) ◽  
pp. 547-557 ◽  
Author(s):  
Xu Chen ◽  
Jia-Ming Ma ◽  
Ke-Lan Yong ◽  
Jing-Ci Lv ◽  
Xia-Bing Zhang

The interaction between loureirin B (Lour B) and human serum albumin (HSA) was investigated by fluorescence and UV–vis absorption spectroscopy. Experimental results indicated that loureirin B had a strong ability to quench the intrinsic fluorescence of HSA through a dynamic quenching procedure. The fluorescence quenching data revealed that the quenching constants (KSV) 2.68×104, 3.30×104and 4.10×104l/mol at 300, 310 and 320 K, respectively. Based on the thermodynamic parameters obtained, the positive values of enthalpy change ΔH and entropy change ΔS suggested that hydrophobic forces played a major role in the interaction of Lour B with HSA. According to Förster theory of energy transfer, the distancerbetween HSA and Lour B was calculated to be 2.85 nm. Furthermore, the effect of Lour B on the conformation of HSA was analyzed by synchronous fluorescence and three-dimensional fluorescence spectra.


2019 ◽  
Vol 44 (4) ◽  
pp. 524-529 ◽  
Author(s):  
Sibel Korunur ◽  
Bilgin Zengin ◽  
Ali Yilmaz

Abstract Background Human serum albumin (HSA) is often selected as a subject of any study because albumin is the most abundant protein in human blood plasma. NMR is recognized as a valuable method to determine the structure of proteins-ligand and protein-drug complexes. Objective – Aim of the study In this study, protein drug interactions were investigated using 5-Fluorouracil anti-cancer drug and human serum albumin protein. Materials and methods In this context 400 MHz NMR spectrometry was used and NMR relaxation rates in drug-albumin complex were investigated with respect to increase albumin concentration and increase in 5-Fluorouracil (5-FU)-albumin solution temperature. Results The results of this study indicated that 5-FU had a weak association with albumin, and it easily dissociated from the protein to which it was attached. Conclusion The obtained results also gave us useful information about molecular dynamics of drug-albumin interactions.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ting Zhao ◽  
Zihui Liu ◽  
Jingmei Niu ◽  
Baoxing Lv ◽  
Yuliang Xiao ◽  
...  

Salbutamol (SBAL), a kind of short-acting beta 2-adrenergic agonist, has been mainly used to treat bronchial asthma and other allergic airway diseases clinically. In this study, the interaction mechanism between salbutamol and human serum albumin was researched by the multispectral method and molecular docking. The fluorescence intensity of HSA could be regularly enhanced with the increase of SBAL concentration. Both the results of the multispectral method and molecular docking showed that SBAL could bind HSA with van der Waals force and hydrogen bonds. The binding mechanism was further analysed by UV-Vis and synchronous fluorescence spectra. The contents of the secondary structure of free HSA and SBAL-HSA complex were evaluated using CD spectra.


Sign in / Sign up

Export Citation Format

Share Document