TEM INVESTIGATIONS ON CNT-ADDED HEXAGONAL WO3 FILMS FOR SENSING APPLICATIONS

NANO ◽  
2008 ◽  
Vol 03 (04) ◽  
pp. 223-227 ◽  
Author(s):  
KATARÍNA SEDLÁCKOVÁ ◽  
RADU IONESCU ◽  
CSABA BALÁZSI

In this work, nanocrystalline hexagonal tungsten oxide was prepared by acidic precipitation from sodium tungstate solution. TEM studies of nanopowders showed that the average size of the hexagonal nanoparticles is 30–50 nm. Novel nanocomposites were prepared by embedding a low amount of gold-decorated carbon nanotubes into the hex- WO 3 matrix. The addition of MWCNTs lowered the temperature range of sensitivity of hex- WO 3 nanocomposites to NO 2 hazardous gas. The sensitivity of hex- WO 3 with Au -decorated MWCNTs to NO 2 is at the temperature range between 25°C and 250°C.

2008 ◽  
Vol 589 ◽  
pp. 67-71 ◽  
Author(s):  
Csaba Balázsi ◽  
Radu Ionescu ◽  
Katarína Sedlácková

In this work, nanocrystalline hexagonal tungsten oxide was prepared by acidic precipitation from sodium tungstate solution. TEM studies of nanopowders showed that the average size of the hexagonal nanoparticles is 30-50 nm. Novel nanocomposites were prepared by embedding a low amount of gold decorated carbon nanotubes into the hex-WO3 matrix. The addition of MWCNTs lowered the temperature range of sensitivity of hex-WO3 nanocomposites to NO2 hazardous gas. The sensitivity of hex - WO3 with Au-decorated MWCNTs to NO2 is at the temperature range between 25°C and 250°C.


2008 ◽  
Vol 28 (5) ◽  
pp. 913-917 ◽  
Author(s):  
Csaba Balázsi ◽  
Lisheng Wang ◽  
Esra Ozkan Zayim ◽  
Imre Miklós Szilágyi ◽  
Katarína Sedlacková ◽  
...  

2021 ◽  
Author(s):  
Manasi Doshi ◽  
Eric Paul Fahrenthold

Explosives and hazardous gas sensing using carbon nanotube (CNT) based sensors has been a focus of considerable experimental research. The simplest sensors have employed a chemiresistive sensing mechanism, and rely...


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1721
Author(s):  
Heon Yong Jeong ◽  
Hyung San Lim ◽  
Ju Hyuk Lee ◽  
Jun Heo ◽  
Hyun Nam Kim ◽  
...  

The effect of scintillator particle size on high-resolution X-ray imaging was studied using zinc tungstate (ZnWO4) particles. The ZnWO4 particles were fabricated through a solid-state reaction between zinc oxide and tungsten oxide at various temperatures, producing particles with average sizes of 176.4 nm, 626.7 nm, and 2.127 μm; the zinc oxide and tungsten oxide were created using anodization. The spatial resolutions of high-resolution X-ray images, obtained from utilizing the fabricated particles, were determined: particles with the average size of 176.4 nm produced the highest spatial resolution. The results demonstrate that high spatial resolution can be obtained from ZnWO4 nanoparticle scintillators that minimize optical diffusion by having a particle size that is smaller than the emission wavelength.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Waris Obitayo ◽  
Tao Liu

The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Hongkun He ◽  
Chao Gao

We report a facile approach to prepare Fe3O4/Pt nanoparticles decorated carbon nanotubes (CNTs). The superparamagnetic Fe3O4nanoparticles with average size of4∼5 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl3. The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe3O4nanopartilces and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanopaticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe3O4/Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.


Sign in / Sign up

Export Citation Format

Share Document