THE ADVANTAGE OF LOW GROWTH TEMPERATURE AND V/III RATIO FOR InxGa1-xAs NANOWIRES GROWTH

NANO ◽  
2011 ◽  
Vol 06 (02) ◽  
pp. 159-165 ◽  
Author(s):  
EDY WIBOWO ◽  
ZULKAFLI OTHAMAN ◽  
SAMSUDI SAKRANI ◽  
IMAM SUMPONO

Cylindrical In x Ga 1-x As nanowires (NWs) perpendicular to the substrate have been successfully grown using MOCVD. Morphology of In x Ga 1-x As NWs has been observed using Field Emission-Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM). Both FE-SEM and TEM results show that the NWs grown at low growth temperature and V/III ratio were via direct impinging mechanism. Energy Dispersive X-ray spectroscopy (EDX) results confirm that the cylindrical NWs grown via direct impinging mechanism and tends to have uniform chemical composition.

2008 ◽  
Vol 8 (3) ◽  
pp. 1183-1190 ◽  
Author(s):  
Chunxia Li ◽  
Cuikun Lin ◽  
Xiaoming Liu ◽  
Jun Lin

Nanostructured CaWO4, CaWO4:Eu3+, and CaWO4:Tb3+ phosphor particles were synthesized via a facile sonochemical route. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, low voltage cathodoluminescence spectra, and photoluminescence lifetimes were used to characterize the as-obtained samples. The X-ray diffraction results indicate that the samples are well crystallized with the scheelite structure of CaWO4. The transmission electron microscopy and field emission scanning electron microscopy images illustrate that the powders consist of spherical particles with sizes from 120 to 160 nm, which are the aggregates of even smaller nanoparticles ranging from 10 to 20 nm. Under UV light or electron beam excitation, the CaWO4 powder exhibited a blue emission band with a maximum at 430 nm originating from the WO2−4 groups, while the CaWO4:Eu3+ powder showed red emission dominated by 613 nm ascribed to the 5D0 → 7F2 of Eu3+, and the CaWO4:Tb3+ powders showed emission at 544 nm, ascribed to the 5D4 → 7F5 transition of Tb3+. The PL excitation and emission spectra suggest that the energy is transferred from WO2−4 to Eu3+CaWO4:Eu3+ and to Tb3+ in CaWO4:Tb3+. Moreover, the energy transfer from WO2−4 to Tb3+ in CaWO4:Tb3+ is more efficient than that from WO2−4 to Eu3+ in CaWO4:Eu3+. This novel and efficient pathway could open new opportunities for further investigating the novel properties of tungstate materials.


2020 ◽  
Vol 60 (6) ◽  
Author(s):  
Jan Loskot ◽  
Maciej Zubko ◽  
Zbigniew Janikowski

In the presented research, the methods of scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and transmission electron microscopy were applied to analyse the powder waste obtained by cutting of AW-3103 aluminium alloy using a fibre laser. The scanning electron microscopy allows to analyse the morphology of the waste microparticles, the energy-dispersive X-ray spectroscopy revealed their chemical composition, which was compared with the composition of the original cut material. In the waste powder, mainly plate-like particles were observed that contain almost pure aluminium. X-ray powder diffraction measurements confirmed that the waste powder is composed of aluminium phase with only a slight presence of other phases (magnetite, austenite and graphite) and the transmission electron microscopy revealed the presence of nanoscale particles in this waste powder. Furthermore, it was found that the average size of the microparticles depends on the thickness of the cut material: particles obtained from a thicker workpiece were substantially bigger than those obtained from the thinner material. On the contrary, the dimensions of the workpiece have only a little impact on the particles’ shape and no significant influence on their chemical composition. The results also suggest that the microparticles could be used as an input material for powder metallurgy. But there is also a certain health risk connected with inhalation of such tiny particles, especially the nanoparticles, which can penetrate deep into the human pulmonary system.


1996 ◽  
Vol 11 (6) ◽  
pp. 1367-1372 ◽  
Author(s):  
J.C.L. Chow ◽  
P.C.W. Fung ◽  
H.M. Shao ◽  
C.C. Lam

Pb-substituted Hg-based superconductor of Hg0.66Pb0.33Ba2Ca2Cu3Oy has been fabricated using the sealed quartz tube technique. R- and x-ray diffraction pattern (XDP) measurements show that the specimen has a Tc of 135 K and contains mainly the Hg-1223 phase. Scanning electron microscopy/energy dispersive x-ray analysis (SEM/EDX) and transmission electron microscopy/energy dispersive x-ray analysis (TEM/EDX) were employed to study the texture and chemical composition of the specimen. It is found that the specimen contains round-shaped grains with a mixture of Hg-1223, BaCuO2, and Ca0.85CuO2 phases, square-shaped grains with a formula of PbBa2O3, small single crystals with single Hg-1223 phase, and crystal-like layers with a mixture of Hg-1223 and BaCuO2 phase. We consider that though the doping of Pb can benefit the stabilization of the Hg-1223 phase, it introduces other impurity phases and textures in the specimen at the same time.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2011 ◽  
Vol 412 ◽  
pp. 5-8 ◽  
Author(s):  
Ying Zhang ◽  
Ai Chen ◽  
Hai Rong Wang ◽  
Ze Song Li ◽  
Ying Ping Shen

The present article reports the results of studies related to the synthesis of nanocrystalline ceria powder by combustion process using salt combustion aid. Cerium nitrate as oxidant and urea as fuel were used as reagents, Sodium Chloride was compared as combustion aid. The phase analysis and particle size were compared. The product was characterized by X-ray diffraction, Scanning electron microscopy and Transmission electron microscopy. The results showed that employment of starting fuel with combustion aid resulted in synthesizing nanocrystalline ceria powder with fine agglomerates. By using combustion aid, the energetics of the combustion reaction and particle characteristics have been changed.


1997 ◽  
Vol 3 (4) ◽  
pp. 381-396
Author(s):  
S. Chandra ◽  
D. Van Gemert

Abstract Interior plaster from the Abbot's Palace of the Abbey of Villers-la-Ville, Brabant Wallon province, Belgium has been investigated. It is done by using chemical analysis, x-ray diffraction analysis, scanning electron microscopy, energy dispersive electron spectroscopy, and transmission electron microscopy. It is found that the rendering was made with lime rich mortar and animal hairs. The sand used was very fine and the hairs were very short. The solid constituents and the hairs were uniformly dispersed, which could have been obtained by the addition of some other natural polymer, containing protein.


2009 ◽  
Vol 66 ◽  
pp. 171-174
Author(s):  
Zhao Deng ◽  
Ying Dai ◽  
Wen Chen

Single-crystalline BaTiO3 nanoparticles and BaCO3 nanowires were synthesized respectively through the use of a reverse micelle as a medium in the same Oleic acid/n-octane/H2O system, by changing the H2O2 dosage. Both the phase composition and the morphology can be controled. The samples derived were characterized with X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The formation mechanism has been fully discussed.


2015 ◽  
Vol 229 ◽  
pp. 3-10 ◽  
Author(s):  
Bartłomiej Dybowski ◽  
Bogusława Adamczyk-Cieślak ◽  
Kinga Rodak ◽  
Iwona Bednarczyk ◽  
Andrzej Kiełbus ◽  
...  

The complex microstructure of as-cast AlSi7Mg alloy has been investigated. Microstructure observations were done using light microscopy, scanning electron microscopy and transmission electron microscopy. Chemical composition of the microstructure constituents was investigated by means of energy dispersive spectrometry, conducted both during SEM and STEM investigations. Selected area diffraction was used to identify the phases in the alloy. Microstructure of the alloy in the as-cast condition consists of Al-Si eutectic and intermetallic phases in the interdendritic regions. These are: Mg2Si, α-AlFeMnS, β-AlFeSi and π-AlFeSiMg phases. What is more, number of fine precipitates were found within the α-Al dendrites. Only the occurrence of U1 (MgAl2Si2) phase has been confirmed.


2011 ◽  
Vol 347-353 ◽  
pp. 615-620
Author(s):  
Ying Jia ◽  
Tian Tian Liu ◽  
Cheng Luo

Ce0.67Zr0.33O2 (CZ) nanorods are successfully synthesized by glycol-assisted hydrothermal method using zirconium oxychloride, cerium nitrate and urea, with the presence of sodium hypochlorite. The products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectra. The catalytic oxidation characters about Pd/CZ three-way catalyst (TWC) prepared with different loads of Pd are also investigated. The results show that the as-prepared Pd/CZ has excellent catalytic oxidation character to CO.


Sign in / Sign up

Export Citation Format

Share Document