One-Step Hydrothermal Synthesis of CoNi2S4 for Hybrid Supercapacitor Electrodes

NANO ◽  
2019 ◽  
Vol 14 (07) ◽  
pp. 1950088 ◽  
Author(s):  
Peng Liu ◽  
Yanwei Sui ◽  
Fuxiang Wei ◽  
Jiqiu Qi ◽  
Qingkun Meng ◽  
...  

In this study, a simple one-step hydrothermal method was developed to prepare a novel hierarchical CoNi2S4 nanostructure similar to rambutan fruit. The surface microstructural study clearly visualized that the rambutan-like CoNi2S4 consists of nanorods grown directly on the surface of spherical core structures. The close attachment of the nanorods to the spheres increased the active areas of the electrode, which facilitates efficient charge transport from the nanorods to the spherical core structure. CoNi2S4 with a rambutan-like hierarchical structure showed an excellent specific capacitance of 944[Formula: see text]F[Formula: see text]g[Formula: see text] at 1[Formula: see text]A[Formula: see text]g[Formula: see text], considerable rate capacitance (75.6% retention at 10[Formula: see text]A[Formula: see text]g[Formula: see text]) and excellent cycling life (91.1% retention after 5000 circulations) in the three-electrode system. Besides, the assembled hybrid supercapacitor based on CoNi2S4 and reduced graphene oxide exhibited a high specific energy density of 23.58[Formula: see text]Wh[Formula: see text]kg[Formula: see text] at the power density of 800[Formula: see text]W[Formula: see text]kg[Formula: see text].

RSC Advances ◽  
2018 ◽  
Vol 8 (47) ◽  
pp. 26818-26827 ◽  
Author(s):  
Seyed Abbas Rahimi ◽  
Parviz Norouzi ◽  
Mohammad Reza Ganjali

In this study, Co(OH)2-reduced graphene oxide has been synthesized using a simple and rapid one-step cathodic electrodeposition method in a two electrode system at a constant current density on a stainless steel plate, and then characterized as a supercapacitive material on Ni foam.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Chunyan Wang ◽  
Lianwei Shan ◽  
Dongyuan Song ◽  
Yanwei Xiao ◽  
Jagadeesh Suriyaprakash

In this letter, we investigated the photocatalytic activity of the newly formed rGO/PbTiO3 composites, which are synthesized by a one-step hydrothermal route. By adjusting the amount of reduced graphene oxide (rGO) (0, 0.15, 0.30, 0.60, and 1.20 wt%) with the PbTiO3, we constructed various photocatalysts for this investigation. The crystal structure and morphology of the various composites were studied by powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Photoelectron spectroscopic study revealed that the band structure of the newly formed composites and efficient charge separation can be obtained by the interfaces of various rGO content. In addition, the photocatalytic performance of the synthesized composites was explored by H2 evolution and rhodamine blue (RhB) degradation. The obtained results indicated that the addition of the appropriate amount of rGO could improve the activity of pure PbTiO3, significantly.


2007 ◽  
Vol 534-536 ◽  
pp. 17-20
Author(s):  
Woo Hyun Jung ◽  
Dong Kyu Park ◽  
Kwang Chul Jung ◽  
Se Hoon Suck ◽  
In Sup Ahn ◽  
...  

As the electrodes of secondary battery are made with sulfide composite powders, excellent electrode system of environmental non-toxicity and with high specific energy density and low material cost can be obtained. In this study, the (Fe, M)S2 composite powders was synthesized by mechanochemical processes (MCP) in order to improve of the cycle life in bettery. The formation of pyrite phase appreared at the case which adds nickel, but it was not observed in the case where the transition metal was does not add but the transition metal such as cobalt, molybdenum was added in stead. From charge-discharge test results, the initial discharge capasity of (Fe, Ni)S2 electrode was 845 mAh/g. The initial discharge capasity of (Fe, Co)S2 electrode was 500mAh/g, but it showed a better cycle perfoemance than the case where the diffrent transition metal was added.


Author(s):  
S.P.A.U.K. Samarakoon ◽  
C.A.N. Fernando

A considerable photo-current enhancement was found at the Cu/p-Cu2O/rGO-electrolyte interface in a photo-electrochemical cell with compared to that of Cu/p-Cu2O-electrolyte interface. The reason for the photo-current enhancement may be due to the efficient charge separation process provided at Cu/p-Cu2O/rGO-electrolyte interface. Here rGO (reduced graphene oxide) acts as an electron acceptor for the photo-generated charge carriers as it readily accept electrons from the conduction band of p-Cu2O. rGO was synthesized using electro-phoretic deposition (EPD) technique. Fabricated samples were characterized using diffuse reflectance spectra, photo-current action spectra and the time development of the photocurrent of photo-electrochemical cells.


RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24320-24330 ◽  
Author(s):  
Junkai He ◽  
Ying Liu ◽  
Yongtao Meng ◽  
Xiangcheng Sun ◽  
Sourav Biswas ◽  
...  

A new one-step microwave method was designed for synthesis of rGO/Co3O4, and the Li-ion battery showed high capacity and long life.


2017 ◽  
Vol 5 (20) ◽  
pp. 3718-3727 ◽  
Author(s):  
Saibo Chen ◽  
Hao Nan ◽  
Xuan Zhang ◽  
Yuting Yan ◽  
Zhou Zhou ◽  
...  

Bi2WO6 functionalized reduced oxide nanocomposites were prepared by a one-step solvothermal method and their photoelectrochemical performance was greatly improved.


2018 ◽  
Vol 259 ◽  
pp. 617-625 ◽  
Author(s):  
Shusheng Xu ◽  
Chen Su ◽  
Tao Wang ◽  
Yujie Ma ◽  
Jun Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document