High-Performance Asymmetric Supercapacitors Based on the Ni1.5Co1.5S4@CNTs Nanocomposites

NANO ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. 2050136
Author(s):  
Xuan Zheng ◽  
Xingxing He ◽  
Jinlong Jiang ◽  
Zhengfeng Jia ◽  
Yu Li ◽  
...  

In this paper, the Ni[Formula: see text]Co[Formula: see text]S4@CNTs nanocomposites containing different carbon nanotubes (CNT) content were prepared by a one-step hydrothermal method. More hydroxyl and carboxyl groups were introduced on the surface of CNTs by acidizing treatment to increase the dispersion of CNTs. The acid-treated CNTs can more fully compound with Ni[Formula: see text]Co[Formula: see text]S4 nanoparticles to form heterostructure. When the CNTs content is 10[Formula: see text]wt.%, the Ni[Formula: see text]Co[Formula: see text]S4@CNTs-10 nanocomposite exhibits the highest specific capacity of 210[Formula: see text]mAh[Formula: see text]g[Formula: see text] in KOH aqueous electrolytes at current density of 1[Formula: see text]A[Formula: see text]g[Formula: see text]. The superior performances of the Ni[Formula: see text]Co[Formula: see text]S4@CNTs-10 nanocomposite are attributed to the effective synergic effects of the high specific capacity of Ni[Formula: see text]Co[Formula: see text]S4 and the excellent conductivity of CNTs. An asymmetric supercapacitor (ASC) was assembled based on Ni[Formula: see text]Co[Formula: see text]S4@CNTs-10 positive electrode and activated carbon (AC) negative electrode, which delivers a high energy density of 61.2[Formula: see text]Wh[Formula: see text]kg[Formula: see text] at a power density of 800[Formula: see text]W[Formula: see text]kg[Formula: see text], and maintains 34.8[Formula: see text]Wh[Formula: see text]kg[Formula: see text] at a power density of 16079[Formula: see text]W[Formula: see text]kg[Formula: see text]. Also, the ASC device shows an excellent cycling stability with 91.49% capacity retention and above 94% Columbic efficiency after 10 000 cycles at 10[Formula: see text]A[Formula: see text]g[Formula: see text]. This aqueous asymmetric Ni[Formula: see text]Co[Formula: see text]S4@CNTs//AC supercapacitor is promising for practical applications due to its advantages such as high energy density, power delivery and cycling stability.

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


2020 ◽  
Vol 8 (45) ◽  
pp. 24040-24052
Author(s):  
Bobby Singh Soram ◽  
Jiu Yi Dai ◽  
Ibomcha Singh Thangjam ◽  
Nam Hoon Kim ◽  
Joong Hee Lee

One-step electrodeposited MoS2@Ni-mesh as a high-performance negative electrode; a high energy density flexible and transparent asymmetric solid-state supercapacitor is fabricated.


2018 ◽  
Vol 6 (4) ◽  
pp. 1802-1808 ◽  
Author(s):  
Ke Li ◽  
Yanshan Huang ◽  
Jingjing Liu ◽  
Mansoor Sarfraz ◽  
Phillips O. Agboola ◽  
...  

Three-dimensional graphene frameworks enable the development of stretchable asymmetric supercapacitors with a record high energy density of 77.8 W h kg−1, and also excellent stretchability and superior cycling stability.


2018 ◽  
Vol 42 (9) ◽  
pp. 7043-7048 ◽  
Author(s):  
Yun Deng ◽  
Aifei Xu ◽  
Wangting Lu ◽  
Yanhua Yu ◽  
Cheng Fu ◽  
...  

Graphene-ordered mesoporous carbon hybrids exhibited advanced specific capacity, high energy density and power density, and long cycle life.


2018 ◽  
Vol 6 (19) ◽  
pp. 9109-9115 ◽  
Author(s):  
Xiaoya Chang ◽  
Lei Zang ◽  
Song Liu ◽  
Mengying Wang ◽  
Huinan Guo ◽  
...  

Yolk–shell ZnCo2O4 with in situ formed carbon shows great potential for supercapacitors, which delivers high energy density and power density.


NANO ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. 1850136 ◽  
Author(s):  
Jingtong Zhang ◽  
Fuzhen Zhao ◽  
Kun Du ◽  
Yan Zhou

Three-dimensional (3D) mixed phases NiSe nanoparticles growing on the nickel foam were synthesized via a simple one-step hydrothermal method. A series of experiments were carried out to control the morphology by adjusting the amount of selenium in the synthetic reaction. Meanwhile, the as-prepared novel column-acicular structure NiSe exist three advantages including ideal electrical conductivity, high specific capacity and high cycling stability. It delivered a high capacitance of 10.8[Formula: see text]F[Formula: see text]cm[Formula: see text] at a current density[Formula: see text] of 5[Formula: see text]mA[Formula: see text]cm[Formula: see text]. An electrochemical capacitor device operating at 1.6[Formula: see text]V was then constructed using NiSe/NF and activated carbon (AC) as positive and negative electrodes. Moreover, the device showed high energy density of 31[Formula: see text]W[Formula: see text]h[Formula: see text]kg[Formula: see text] at a power density of 0.81[Formula: see text]kW[Formula: see text]kg[Formula: see text], as well as good cycling stability (77% retention after 1500 cycles).


2018 ◽  
Vol 47 (47) ◽  
pp. 17146-17152 ◽  
Author(s):  
Xiao Liang ◽  
Qiufan Wang ◽  
Yun Ma ◽  
Daohong Zhang

A two-ply CNT yarn asymmetric supercapacitor was fabricated by assembling a CuCo2O4 nanowire positive electrode and a PPy nanoparticle negative electrode. The full cell exhibits a high specific capacitance of 59.55 mF cm−2 and a high energy density of 0.02 mW h cm−2.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1467
Author(s):  
Xuanni Lin ◽  
Zhuoyi Yang ◽  
Anru Guo ◽  
Dong Liu

High energy density batteries with high performance are significantly important for intelligent electrical vehicular systems. Iron sulfurs are recognized as one of the most promising anodes for high energy density lithium-ion batteries because of their high theoretical specific capacity and relatively stable electrochemical performance. However, their large-scale commercialized application for lithium-ion batteries are plagued by high-cost and complicated preparation methods. Here, we report a simple and cost-effective method for the scalable synthesis of nanoconfined FeS in porous carbon (defined as FeS@C) as anodes by direct pyrolysis of an iron(III) p-toluenesulfonate precursor. The carbon architecture embedded with FeS nanoparticles provides a rapid electron transport property, and its hierarchical porous structure effectively enhances the ion transport rate, thereby leading to a good electrochemical performance. The resultant FeS@C anodes exhibit high reversible capacity and long cycle life up to 500 cycles at high current density. This work provides a simple strategy for the mass production of FeS@C particles, which represents a critical step forward toward practical applications of iron sulfurs anodes.


RSC Advances ◽  
2020 ◽  
Vol 10 (17) ◽  
pp. 9833-9839
Author(s):  
Changzhen Zhan ◽  
Jianan Song ◽  
Xiaolong Ren ◽  
Yang Shen ◽  
Hui Wu ◽  
...  

Constructing flexible hybrid supercapacitors is a feasible way to achieve devices with high energy density, high power density and flexibility at the same time.


Sign in / Sign up

Export Citation Format

Share Document