Molecular Dynamics Simulation of Solvation NanoStructure in Carbonate-Based Electrolyte of Lithium–Sulfur Battery

NANO ◽  
2021 ◽  
pp. 2150092
Author(s):  
Chenglong Chen ◽  
Fubin Pei ◽  
Shasha Feng ◽  
Mingzhu Xia ◽  
Fengyun Wang ◽  
...  

Lithium–sulfur (Li–S) batteries are widely regarded as the most promising batteries for the future due to their higher specific capacity and lower prices. Various strategies are utilized to alleviate the shortcomings of Li–S batteries failing to reach theoretical capacity. However, basic research at the molecular level continues to be lacking. Therefore, we use molecular dynamics to study the details of the solvated structure of Li–S batteries electrolyte and the nature of the transport process, revealing the relationship between the solvated structure of the electrolyte of LiPF6 and the organic solvent ethylene carbonate/dimethyl carbonate (EC/DMC). The electrolyte of Li2S4 was first simulated in a pure solvent environment. Then the LiPF6 salt was added to the model to simulate a typical electrolyte for a working Li–S battery. Regarding the rationality of the solvent system, various reference systems such as density, dielectric constant, viscosity and diffusion coefficient of the solvent were used for verification. And the detailed composition of the first solvation shell of the polysulfate ion and the coordination number of the ions are discussed. These results provide new insights into the use of EC/DMC electrolytes in Li–S batteries, while at the same time providing a basis for efficient future predictions of electrolyte structure and transport in complex electrode confinements.

2021 ◽  
Vol 874 ◽  
pp. 88-95
Author(s):  
Oktavianus Hendra Cipta ◽  
Anita Alni ◽  
Rukman Hertadi

The structure of Candida rugosa lipase can be affected by solvents used in the enzymatic reactions. Using molecular dynamics simulation as a tool to study the Candida rugosa lipase structure, we studied the effect of various solvent systems, such as water, water-methanol, and water-methanol-ionic liquid. These solvent systems have been chosen because lipase is able to function in both aqueous and non-aqueous medium. In this study, pyridinium (Py)-based ionic liquids were selected as co-solvent. The MD simulation was run for 50 nanoseconds for each solvent system at 328 K. In the case of water-methanol-ionic liquids solvent systems, the total number of the ionic liquids added were varied: 222, 444, and 888 molecules. Water was used as the reference solvent system. The structure of Candida rugosa lipase in water-methanol system significantly changed from the initial structure as indicated by the RMSD value, which was about 6.4 Å after 50 ns simulation. This value was relatively higher compared to the other water-methanol solvent system containing ionic liquid as co-solvent, which were 2.43 Å for 4Py-Br, 2.1 Å for 8Py-Br, 3.37 Å for 4Py-BF4 and 3.49 Å for 8Py-BF4 respectively. Further analysis by calculating the root mean square fluctuation (RMSF) of each lipase residue found that the presence of ionic liquids could reduce changes in the enzyme structure. This happened because the anion component of the ionic liquid interacts relatively more strongly with residues on the surface of the protein as compared to methanol, thereby lowering the possibility of methanol to come into contact with the protein.


2006 ◽  
Vol 19 (12) ◽  
pp. 896-901 ◽  
Author(s):  
Eduardo Humeres ◽  
Carolina Mascayano ◽  
Gonzalo Riadi ◽  
Fernando González-Nilo

CrystEngComm ◽  
2016 ◽  
Vol 18 (16) ◽  
pp. 2843-2851 ◽  
Author(s):  
Ning Liu ◽  
Ya-nan Li ◽  
Svatopluk Zeman ◽  
Yuan-jie Shu ◽  
Bo-zhou Wang ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 316 ◽  
Author(s):  
Dan Zhu ◽  
Shihao Zhang ◽  
Pingping Cui ◽  
Chang Wang ◽  
Jiayu Dai ◽  
...  

This work could help to better understand the solvent effects on crystal habits and aspect ratio changes at the molecular level, which provide some guidance for solvent selection in industrial crystallization processes. With the catechol crystal habits acquired using both experimental and simulation methods in isopropanol, methyl acetate and ethyl acetate, solvent effects on crystal morphology were explored based on the modified attachment energy model. Firstly, morphologically dominant crystal faces were obtained with the predicted crystal habit in vacuum. Then, modified attachment energies were calculated by the molecular dynamics simulation to modify the crystal shapes in a real solvent environment, and the simulation results were in agreement with the experimental ones. Meanwhile, the surface properties such as roughness and the diffusion coefficient were introduced to analyze the solvent adsorption behaviors and the radial distribution function curves were generated to distinguish diverse types of interactions like hydrogen bonds and van der Waals forces. Results show that the catechol crystal habits were affected by the combination of the attachment energy, surface structures and molecular interaction types. Moreover, the changing aspect ratios of catechol crystals are closely related to the existence of hydrogen bonds which contribute to growth inhibition on specific faces.


2019 ◽  
Vol 33 (32) ◽  
pp. 1950391
Author(s):  
Sailesh Bataju ◽  
Nurapati Pantha

The potential of mean forces (PMFs) has been determined for an isobutane dimer in various solvent environments such as water, methanol and acetonitrile at a temperature of 298 K and pressure of 1 bar using GROMACS software. All the molecular dynamics (MD) simulations are carried out using a TIP3P water model under a CHARMM36 forcefield. Following Umbrella Sampling technique, PMFs are calculated and analyzed using Weighted Histogram Analysis Method (WHAM) and coordination number of first solvation shell is extracted for all solvents using radial distribution function. The shape of PMFs contains contact minima, solvent-separated minima and desolvation maxima. The values of contact minima are not affected much by solvent environment and found to be at 0.5377, 0.5480 and 0.5495 nm for water, methanol and acetonitrile respectively. The corresponding energy depths are found −0.9134, −0.7080 and −0.5295 kcalmol[Formula: see text]. The variation observed at solvent-separated minima is noticeable and found at 0.9012, 0.9721 and 0.9151 nm for water, methanol and acetonitrile, respectively. The coordination number of the first solvation shell by taking an isobutane molecule as a reference from their center of mass is found to be 28.1, 16.9 and 14.8 for water, methanol and acetonitrile, respectively. There is a soft hydrophobic interaction between isobutane dimer and solvents like methanol and acetonitrile relative to water, might be due to the presence of competitive methyl group of methanol and acetonitrile in the solvent medium.


Sign in / Sign up

Export Citation Format

Share Document