scholarly journals A useful quantitative model for determination of enantiomeric composition of racemate praziquantel by ultraviolet spectroscopy combined with partial least squares and its application to praziquantel tablets

2018 ◽  
Vol 11 (03) ◽  
pp. 1850011 ◽  
Author(s):  
Man Zhao ◽  
Ran Meng ◽  
Yifang Lu ◽  
Lingyun Hu ◽  
Na Sun ◽  
...  

A simple and novel method has been proposed to determine the enantiomeric composition of racemate praziquantel (PZQ) by using the analysis of ultraviolet (UV) spectroscopy combined with partial least squares (PLS). This method does not rely on the use of expensive carbohydrates such as cyclodextrins, but on the use of inexpensive sucrose, which is equally effective as carbohydrate. PZQ has two enantiomers. Through measuring the slight difference in the UV spectral absorption of PZQ due to different interactions between its two enantiomers and sucrose, the enantiomeric composition was determined by a quantitative model based on PLS analysis. The model showed that the correlation coefficients of calibration set and validation set were 0.9971 and 0.9972, respectively. The root mean square error of calibration (RMSEC) and the root mean square error of prediction (RMSEP) were 0.0167 and 0.0129, respectively. Then, the independent data of PZQ tablets were also used to test how well the quantitative model of PLS predicted the enantiomeric composition. The ratio of S-PZQ in tablet was 0.492, determined by high-performance liquid chromatography as the reference value. Six solutions of the tablet samples were prepared, and the ratios of S-PZQ in tablet samples in the validation set were predicted by the PLS model. Their relative errors with the reference value were not more than 4%. Therefore, the established model could be accurate and employed to predict the enantiomeric compositions of PZQ tablets.

2017 ◽  
Vol 71 (11) ◽  
pp. 2427-2436 ◽  
Author(s):  
Mi Lei ◽  
Long Chen ◽  
Bisheng Huang ◽  
Keli Chen

In this research paper, a fast, quantitative, analytical model for magnesium oxide (MgO) content in medicinal mineral talcum was explored based on near-infrared (NIR) spectroscopy. MgO content in each sample was determined by ethylenediaminetetraacetic acid (EDTA) titration and taken as reference value of NIR spectroscopy, and then a variety of processing methods of spectra data were compared to establish a good NIR spectroscopy model. To start, 50 batches of talcum samples were categorized into training set and test set using the Kennard–Stone (K-S) algorithm. In a partial least squares regression (PLSR) model, both leave-one-out cross-validation (LOOCV) and training set validation (TSV) were used to screen spectrum preprocessing methods from multiplicative scatter correction (MSC), and finally the standard normal variate transformation (SNV) was chosen as the optimal pretreatment method. The modeling spectrum bands and ranks were optimized using PLSR method, and the characteristic spectrum ranges were determined as 11995–10664, 7991–6661, and 4326–3999 cm−1, with four optimal ranks. In the support vector machine (SVM) model, the radical basis function (RBF) kernel function was used. Moreover, the full spectrum data of samples pretreated with SNV, the characteristic spectrum data screened using synergy interval partial least squares (SiPLS), and the scoring data of the first four ranks obtained by a partial least squares (PLS) dimension reduction of characteristic spectrum were taken as input variables of SVM, and the MgO content reference values of various sample were taken as output values. In addition, the SVM model internal parameters were optimized using the grid optimization method (GRID), particle swarm optimization (PSO), and genetic algorithm (GA) so that the optimal C and g-values were determined and the validation model was established. By comprehensively comparing the validation effects of different models, it can be concluded that the scoring data of the first four ranks obtained by PLS dimension reduction of characteristic spectrum were taken as input variables of SVM, and the PLS-SVM regression model established using GRID was the optimal NIR spectroscopy quantitative model of talc. This PLS-SVM regression model (rank = 4) measured that the MgO content of talcum was in the range of 17.42–33.22%, with root mean square error of cross validation (RMSECV) of 2.2127%, root mean square error of calibration (RMSEC) of 0.6057%, and root mean square error of prediction (RMSEP) of 1.2901%. This model showed high accuracy and strong prediction capacity, which can be used for rapid prediction of MgO content in talcum.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Wei Zhang ◽  
Hang Song ◽  
Jing Lu ◽  
Wen Liu ◽  
Lirong Nie ◽  
...  

Online near-infrared spectroscopy was used as a process analysis technique in the synthesis of 2-chloropropionate for the first time. Then, the partial least squares regression (PLSR) quantitative model of the product solution concentration was established and optimized. Correlation coefficient (R2) of partial least squares regression (PLSR) calibration model was 0.9944, and the root mean square error of correction (RMSEC) was 0.018105 mol/L. These values of PLSR and RMSEC could prove that the quantitative calibration model had good performance. Moreover, the root mean square error of prediction (RMSEP) of validation set was 0.036429 mol/L. The results were very similar to those of offline gas chromatographic analysis, which could prove the method was valid.


2004 ◽  
Vol 50 (1) ◽  
pp. 175-181 ◽  
Author(s):  
Jonathon T Olesberg ◽  
Mark A Arnold ◽  
Michael J Flanigan

Abstract Background: We describe online optical measurements of urea in the effluent dialysate line during regular hemodialysis treatment of several patients. Monitoring urea removal can provide valuable information about dialysis efficiency. Methods: Spectral measurements were performed with a Fourier-transform infrared spectrometer equipped with a flow-through cell. Spectra were recorded across the 5000–4000 cm−1 (2.0–2.5 μm) wavelength range at 1-min intervals. Savitzky–Golay filtering was used to remove baseline variations attributable to the temperature dependence of the water absorption spectrum. Urea concentrations were extracted from the filtered spectra by use of partial least-squares regression and the net analyte signal of urea. Results: Urea concentrations predicted by partial least-squares regression matched concentrations obtained from standard chemical assays with a root mean square error of 0.30 mmol/L (0.84 mg/dL urea nitrogen) over an observed concentration range of 0–11 mmol/L. The root mean square error obtained with the net analyte signal of urea was 0.43 mmol/L with a calibration based only on a set of pure-component spectra. The error decreased to 0.23 mmol/L when a slope and offset correction were used. Conclusions: Urea concentrations can be continuously monitored during hemodialysis by near-infrared spectroscopy. Calibrations based on the net analyte signal of urea are particularly appealing because they do not require a training step, as do statistical multivariate calibration procedures such as partial least-squares regression.


2015 ◽  
Vol 08 (06) ◽  
pp. 1550023 ◽  
Author(s):  
Yanling Pei ◽  
Zhisheng Wu ◽  
Xinyuan Shi ◽  
Xiaoning Pan ◽  
Yanfang Peng ◽  
...  

Near infrared (NIR) assignment of Isopsoralen was performed using deuterated chloroform solvent and two-dimensional correlation spectroscopy (2D-COS) technology. Yunkang Oral Liquid was applied to study Isopsoralen, the characteristic bands by spectral assignment as well as the bands by interval partial least squares (iPLS) and synergy interval partial least squares (siPLS) were used to establish partial least squares (PLS) model. The coefficient of determination in calibration [Formula: see text] were 0.9987, 0.9970 and 0.9982. The coefficient of determination in cross validation [Formula: see text] were 0.9985, 0.9921 and 0.9982. The coefficient of determination in prediction [Formula: see text] were 0.9987, 0.9955 and 0.9988. The root mean square error of calibration (RMSEC) were 0.27, 0.40 and 0.31 ppm. The root mean square error of cross validation (RMSECV) were 0.30, 0.67 and 0.32 ppm. The root mean square error of prediction (RMSEP) were 0.23, 0.43 and 0.22 ppm. The residual predictive deviation (RPD) were 31.00, 16.58 and 32.41. It turned out that the characteristic bands by spectral assignment had the same results with the chemometrics methods in PLS model. It provided guidance for NIR spectral assignment of chemical compositions in Chinese Materia Medica (CMM).


2009 ◽  
Vol 92 (1) ◽  
pp. 248-256
Author(s):  
Aamna Balouch ◽  
Najma Memon ◽  
Muhammad I Bhanger ◽  
Muhammad Y Khuhawar

Abstract Partial least-squares regression was applied for the simultaneous determination of iron, vanadium, and cobalt after complexation with picolinaldehyde-4-phenyl-3-thiosemicarbazone (PAPT) in the presence of anionic sodium dodecylsulfate (SDS) micelles. These 3 complexed metal ions exhibited overlapping spectra in the 390510 nm region with a maximum absorbance at 415 nm at pH 3.0 and enhanced absorbance in the presence of SDS. The data for the simultaneous determination of these metal ions were analyzed using a simple partial least-squares (SIMPLS) algorithm. Formation constants (log Kf) were found to be 4.65, 3.29, and 4.85 for PAPT complexes of Fe, V, and Co, respectively, and the detection limits for Fe, V, and Co were 0.013, 0.002, and 0.010 g/mL, respectively. Common anions and cations did not interfere with the proposed method. The method was validated by calculating root mean square error of cross-validation, root mean square error of calibration, and root mean square error of prediction and was applied to determine these 3 metal ions in real crude oil samples.


2012 ◽  
Vol 66 (11) ◽  
Author(s):  
Yue Huang ◽  
Shun-Geng Min ◽  
Jin-Li Cao ◽  
Sheng-Feng Ye ◽  
Jia Duan

AbstractNear-infrared (NIR) imaging systems simultaneously record spectral and spatial information. Near-infrared imaging was applied to the identification of (E,Z)-4-(3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloyl)morpholine (dimethomorph) in both mixed samples and commercial formulation in this study. The distributions of technical dimethomorph and additive in the heterogeneous counterfeit product were obtained by the relationship imaging (RI) mode. Furthermore, a series of samples which consisted of different contents of uniformly distributed dimethomorph were prepared and three data cubes were generated for each content. The spectra extracted from these images were imported to establish the partial least squares model. The model’s evaluating indicators were: coefficient of determination (R 2) 99.42 %, root mean square error of calibration (RMSEC) 0.02612, root mean square error of cross-validation (RMSECV) 0.01693, RMSECVmean 0.03577, relative standard error of prediction (RSEP) 0.01999, and residual predictive deviation (RPD) 15.14. Relative error of prediction of the commercial formulation was 0.077, indicating the predicted value correlated with the real content. The chemical value reconstruction image of dimethomorph formulation products was calculated by a MATLAB program. NIR microscopy imaging here manifests its potential in identifying the active component in the counterfeit pesticide and quantifying the active component in its scanned image.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Weihao Zhu ◽  
Hao Hong ◽  
Zhihui Hong ◽  
Xianjie Kang ◽  
Weifeng Du ◽  
...  

In order to identify the quality of crude and processed Corydalis Rhizoma decoction pieces, the research established a simple, fast, reliable, and validated near-infrared qualitative and quantitative model combined with chemometrics. 51 batches of crude and 40 batches of processed Corydalis Rhizoma from the Zhejiang and Jiangsu provinces of China were collected and analyzed. Crude and processed Corydalis Rhizoma samples were crushed to obtain NIR spectra. The content of seven alkaloids in crude and processed Corydalis Rhizoma was determined by high-performance liquid chromatography (HPLC). Pretreatment methods were screened such as normalization methods, offset filtering methods, and smoothing. Combined with partial least squares-discriminant analysis (PLS-DA) and partial least squares (PLS), the qualitative and quantitative models of crude and processed Corydalis Rhizoma were established, and the correlation coefficient (R2), root mean square error of calibration (RMSEC), and root mean square error of prediction (RMSEP) were used as evaluation indexes. Tetrahydropalmatine was used as an example for screening pretreatment methods; the results showed that MSC combined with the second derivative and no smoothing and the model with the wavelength range of 10000–5000 cm−1 had the best predictive ability and applied to all seven alkaloid components. Among them, the correlation coefficients were all higher than 0.99, and RMSEC and RMSEP were all less than 1%. The qualitative and quantitative model of the seven alkaloids in Corydalis Rhizoma can effectively identify the crude and processed Corydalis Rhizoma and determine the content of the seven alkaloids. By studying the NIR qualitative and quantitative models of crude and processed Corydalis Rhizoma, we can achieve rapid discrimination and quantitative prediction of crude and processed Corydalis Rhizoma. These methods can greatly improve the efficiency of traditional Chinese medicine analysis and provide a strong scientific basis for the quality identification and control of traditional Chinese medicine.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1020
Author(s):  
Yanqi Dong ◽  
Guangpeng Fan ◽  
Zhiwu Zhou ◽  
Jincheng Liu ◽  
Yongguo Wang ◽  
...  

The quantitative structure model (QSM) contains the branch geometry and attributes of the tree. AdQSM is a new, accurate, and detailed tree QSM. In this paper, an automatic modeling method based on AdQSM is developed, and a low-cost technical scheme of tree structure modeling is provided, so that AdQSM can be freely used by more people. First, we used two digital cameras to collect two-dimensional (2D) photos of trees and generated three-dimensional (3D) point clouds of plot and segmented individual tree from the plot point clouds. Then a new QSM-AdQSM was used to construct tree model from point clouds of 44 trees. Finally, to verify the effectiveness of our method, the diameter at breast height (DBH), tree height, and trunk volume were derived from the reconstructed tree model. These parameters extracted from AdQSM were compared with the reference values from forest inventory. For the DBH, the relative bias (rBias), root mean square error (RMSE), and coefficient of variation of root mean square error (rRMSE) were 4.26%, 1.93 cm, and 6.60%. For the tree height, the rBias, RMSE, and rRMSE were—10.86%, 1.67 m, and 12.34%. The determination coefficient (R2) of DBH and tree height estimated by AdQSM and the reference value were 0.94 and 0.86. We used the trunk volume calculated by the allometric equation as a reference value to test the accuracy of AdQSM. The trunk volume was estimated based on AdQSM, and its bias was 0.07066 m3, rBias was 18.73%, RMSE was 0.12369 m3, rRMSE was 32.78%. To better evaluate the accuracy of QSM’s reconstruction of the trunk volume, we compared AdQSM and TreeQSM in the same dataset. The bias of the trunk volume estimated based on TreeQSM was −0.05071 m3, and the rBias was −13.44%, RMSE was 0.13267 m3, rRMSE was 35.16%. At 95% confidence interval level, the concordance correlation coefficient (CCC = 0.77) of the agreement between the estimated tree trunk volume of AdQSM and the reference value was greater than that of TreeQSM (CCC = 0.60). The significance of this research is as follows: (1) The automatic modeling method based on AdQSM is developed, which expands the application scope of AdQSM; (2) provide low-cost photogrammetric point cloud as the input data of AdQSM; (3) explore the potential of AdQSM to reconstruct forest terrestrial photogrammetric point clouds.


2013 ◽  
Vol 807-809 ◽  
pp. 1967-1971
Author(s):  
Yan Bai ◽  
Xiao Yan Duan ◽  
Hai Yan Gong ◽  
Cai Xia Xie ◽  
Zhi Hong Chen ◽  
...  

In this paper, the content of forsythoside A and ethanol-extract were rapidly determinated by near-infrared reflectance spectroscopy (NIRS). 85 samples of Forsythiae Fructus harvested in Luoyang from July to September in 2012 were divided into a calibration set (75 samples) and a validation set (10 samples). In combination with the partical least square (PLS), the quantitative calibration models of forsythoside A and ethanol-extract were established. The correlation coefficient of cross-validation (R2) was 0.98247 and 0.97214 for forsythoside A and ethanol-extract, the root-mean-square error of calibration (RMSEC) was 0.184 and 0.570, the root-mean-square error of cross-validation (RMSECV) was 0.81736 and 0.36656. The validation set were used to evaluate the performance of the models, the root-mean-square error of prediction (RMSEP) was 0.221 and 0.518. The results indicated that it was feasible to determine the content of forsythoside A and ethanol-extract in Forsythiae Fructus by near-infrared spectroscopy.


2010 ◽  
Vol 16 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Yang Meiyan ◽  
Li Jing ◽  
Nie Shaoping ◽  
Hu Jielun ◽  
Yu Qiang ◽  
...  

Near-infrared spectroscopy (NIRS) was used as a rapid and nondestructive method to determine the content of docosahexaenoic acid (DHA) in powdered oil samples. A total of 82 samples were scanned in the diffuse reflectance mode by Nicolet 5700 FTIR spectrometer and the reference values for DHA was measured by gas chromatography. Calibration equations were developed using partial least-squares regression (PLS) with internal cross-validation. Samples were split in two sets, one set used as calibration (n = 66) whereas the remaining samples (n=16) were used as validation set. Two mathematical treatments (first and second derivative), none (log(1/R)) and standard normal variate as scatter corrections and Savitzky—Golay smoothing were explored. To decide upon the number of PLS factors included in the PLS model, the model with the lowest root mean square error of cross-validation (RMSECV=0.44) for the validation set is chosen. The correlation coefficient (r) between the predicted and the reference results which used as an evaluation parameter for the models is 0.968. The root mean square error of prediction of the final model is 0.59. The results reported in this article demonstrate that FT-NIR measurements can serve as a rapid method to determine DHA in powdered oil.


Sign in / Sign up

Export Citation Format

Share Document