scholarly journals Rapid Quality Identification of Decoction Pieces of Crude and Processed Corydalis Rhizoma by Near-Infrared Spectroscopy Coupled with Chemometrics

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Weihao Zhu ◽  
Hao Hong ◽  
Zhihui Hong ◽  
Xianjie Kang ◽  
Weifeng Du ◽  
...  

In order to identify the quality of crude and processed Corydalis Rhizoma decoction pieces, the research established a simple, fast, reliable, and validated near-infrared qualitative and quantitative model combined with chemometrics. 51 batches of crude and 40 batches of processed Corydalis Rhizoma from the Zhejiang and Jiangsu provinces of China were collected and analyzed. Crude and processed Corydalis Rhizoma samples were crushed to obtain NIR spectra. The content of seven alkaloids in crude and processed Corydalis Rhizoma was determined by high-performance liquid chromatography (HPLC). Pretreatment methods were screened such as normalization methods, offset filtering methods, and smoothing. Combined with partial least squares-discriminant analysis (PLS-DA) and partial least squares (PLS), the qualitative and quantitative models of crude and processed Corydalis Rhizoma were established, and the correlation coefficient (R2), root mean square error of calibration (RMSEC), and root mean square error of prediction (RMSEP) were used as evaluation indexes. Tetrahydropalmatine was used as an example for screening pretreatment methods; the results showed that MSC combined with the second derivative and no smoothing and the model with the wavelength range of 10000–5000 cm−1 had the best predictive ability and applied to all seven alkaloid components. Among them, the correlation coefficients were all higher than 0.99, and RMSEC and RMSEP were all less than 1%. The qualitative and quantitative model of the seven alkaloids in Corydalis Rhizoma can effectively identify the crude and processed Corydalis Rhizoma and determine the content of the seven alkaloids. By studying the NIR qualitative and quantitative models of crude and processed Corydalis Rhizoma, we can achieve rapid discrimination and quantitative prediction of crude and processed Corydalis Rhizoma. These methods can greatly improve the efficiency of traditional Chinese medicine analysis and provide a strong scientific basis for the quality identification and control of traditional Chinese medicine.

2018 ◽  
Vol 11 (03) ◽  
pp. 1850011 ◽  
Author(s):  
Man Zhao ◽  
Ran Meng ◽  
Yifang Lu ◽  
Lingyun Hu ◽  
Na Sun ◽  
...  

A simple and novel method has been proposed to determine the enantiomeric composition of racemate praziquantel (PZQ) by using the analysis of ultraviolet (UV) spectroscopy combined with partial least squares (PLS). This method does not rely on the use of expensive carbohydrates such as cyclodextrins, but on the use of inexpensive sucrose, which is equally effective as carbohydrate. PZQ has two enantiomers. Through measuring the slight difference in the UV spectral absorption of PZQ due to different interactions between its two enantiomers and sucrose, the enantiomeric composition was determined by a quantitative model based on PLS analysis. The model showed that the correlation coefficients of calibration set and validation set were 0.9971 and 0.9972, respectively. The root mean square error of calibration (RMSEC) and the root mean square error of prediction (RMSEP) were 0.0167 and 0.0129, respectively. Then, the independent data of PZQ tablets were also used to test how well the quantitative model of PLS predicted the enantiomeric composition. The ratio of S-PZQ in tablet was 0.492, determined by high-performance liquid chromatography as the reference value. Six solutions of the tablet samples were prepared, and the ratios of S-PZQ in tablet samples in the validation set were predicted by the PLS model. Their relative errors with the reference value were not more than 4%. Therefore, the established model could be accurate and employed to predict the enantiomeric compositions of PZQ tablets.


2017 ◽  
Vol 71 (11) ◽  
pp. 2427-2436 ◽  
Author(s):  
Mi Lei ◽  
Long Chen ◽  
Bisheng Huang ◽  
Keli Chen

In this research paper, a fast, quantitative, analytical model for magnesium oxide (MgO) content in medicinal mineral talcum was explored based on near-infrared (NIR) spectroscopy. MgO content in each sample was determined by ethylenediaminetetraacetic acid (EDTA) titration and taken as reference value of NIR spectroscopy, and then a variety of processing methods of spectra data were compared to establish a good NIR spectroscopy model. To start, 50 batches of talcum samples were categorized into training set and test set using the Kennard–Stone (K-S) algorithm. In a partial least squares regression (PLSR) model, both leave-one-out cross-validation (LOOCV) and training set validation (TSV) were used to screen spectrum preprocessing methods from multiplicative scatter correction (MSC), and finally the standard normal variate transformation (SNV) was chosen as the optimal pretreatment method. The modeling spectrum bands and ranks were optimized using PLSR method, and the characteristic spectrum ranges were determined as 11995–10664, 7991–6661, and 4326–3999 cm−1, with four optimal ranks. In the support vector machine (SVM) model, the radical basis function (RBF) kernel function was used. Moreover, the full spectrum data of samples pretreated with SNV, the characteristic spectrum data screened using synergy interval partial least squares (SiPLS), and the scoring data of the first four ranks obtained by a partial least squares (PLS) dimension reduction of characteristic spectrum were taken as input variables of SVM, and the MgO content reference values of various sample were taken as output values. In addition, the SVM model internal parameters were optimized using the grid optimization method (GRID), particle swarm optimization (PSO), and genetic algorithm (GA) so that the optimal C and g-values were determined and the validation model was established. By comprehensively comparing the validation effects of different models, it can be concluded that the scoring data of the first four ranks obtained by PLS dimension reduction of characteristic spectrum were taken as input variables of SVM, and the PLS-SVM regression model established using GRID was the optimal NIR spectroscopy quantitative model of talc. This PLS-SVM regression model (rank = 4) measured that the MgO content of talcum was in the range of 17.42–33.22%, with root mean square error of cross validation (RMSECV) of 2.2127%, root mean square error of calibration (RMSEC) of 0.6057%, and root mean square error of prediction (RMSEP) of 1.2901%. This model showed high accuracy and strong prediction capacity, which can be used for rapid prediction of MgO content in talcum.


2020 ◽  
Vol 103 (1) ◽  
pp. 257-264 ◽  
Author(s):  
Ali M Yehia ◽  
Heba T Elbalkiny ◽  
Safa’a M Riad ◽  
Yasser S Elsaharty

Abstract Background: Chemometrics is a discipline that allows the spectral resolution of drugs in a complicated matrix (e.g., environmental water samples) as an alternative to chromatographic methods. Objective: Three analgesics were traced in wastewater samples with simple and cost-effective multivariate approaches using spectrophotometric data. Methods and Results: Four chemometric approaches were applied for the simultaneous determination of diclofenac, paracetamol, and ibuprofen. Partial least squares (PLS), principal component regression (PCR), artificial neural networks (ANN), and multivariate curve resolution (MCR)–alternating least squares (ALS) were selected. The presented methods were compared and validated for their qualitative and quantitative analyses. Moreover, statistical comparison between the results obtained by the proposed methods and the official methods showed no significant differences. Conclusions: The proposed multivariate calibrations were accurate and specific for quantitative analysis of the studied components. MCR-ALS is the only method that has the capacity for both the quantitative and qualitative analysis of the studied drugs. Highlights: Four chemometric approaches were used for analysis of severally overlapped ternary mixture of three analgesics. The analytical performance of PCR, PLS, MCR-ALS, and ANN was compared and validated in terms of root mean square error of calibration (RMSEC), SE of prediction, and recoveries. ANN gave the highest predicted concentrations with the lowest RMSEC and root mean square error of prediction. MCR-ALS has the capacity for both qualitative and quantitative measurement. The methods have been effectively applied for real samples and compared to official methods.


2013 ◽  
Vol 807-809 ◽  
pp. 2085-2091 ◽  
Author(s):  
Yan Bai ◽  
Hai Yan Gong ◽  
Chun Fang Zuo ◽  
Jing Wei Lei ◽  
Xiao Yan Duan ◽  
...  

To determine the Diosgenin in Dioscorea zingiberensis C.H.Wright by near-infraed spectroscopy (NIRS) combined with TQ software. The near-infrared sprectra and HPLC values of the Diosgenin in Dioscorea zingiberensis C.H.Wright from different areas were collected, and the quantitative calibration model was established with TQ software. And then the prediction samples were anylized by the model. The correlation coefficients (R2), the root-mean-square error of calibration (RMSEC) and the root-mean-square error of cross-validation (RMSECV) of the quantitative calibration model for diosgenin were 0.96459, 0.0999 and 0.30041 respectively; the correlation coefficients of prediction (r2) and the root-mean-square error of prediction (RMSEP) were 0.9634 and 0.128. The method is fast, convenient, non-polluted and accurate. The correction model could be used to predict the diosgenin in Dioscorea zingiberensis C.H.Wright.


2012 ◽  
Vol 66 (11) ◽  
Author(s):  
Yue Huang ◽  
Shun-Geng Min ◽  
Jin-Li Cao ◽  
Sheng-Feng Ye ◽  
Jia Duan

AbstractNear-infrared (NIR) imaging systems simultaneously record spectral and spatial information. Near-infrared imaging was applied to the identification of (E,Z)-4-(3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloyl)morpholine (dimethomorph) in both mixed samples and commercial formulation in this study. The distributions of technical dimethomorph and additive in the heterogeneous counterfeit product were obtained by the relationship imaging (RI) mode. Furthermore, a series of samples which consisted of different contents of uniformly distributed dimethomorph were prepared and three data cubes were generated for each content. The spectra extracted from these images were imported to establish the partial least squares model. The model’s evaluating indicators were: coefficient of determination (R 2) 99.42 %, root mean square error of calibration (RMSEC) 0.02612, root mean square error of cross-validation (RMSECV) 0.01693, RMSECVmean 0.03577, relative standard error of prediction (RSEP) 0.01999, and residual predictive deviation (RPD) 15.14. Relative error of prediction of the commercial formulation was 0.077, indicating the predicted value correlated with the real content. The chemical value reconstruction image of dimethomorph formulation products was calculated by a MATLAB program. NIR microscopy imaging here manifests its potential in identifying the active component in the counterfeit pesticide and quantifying the active component in its scanned image.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1460
Author(s):  
Jinming Liu ◽  
Changhao Zeng ◽  
Na Wang ◽  
Jianfei Shi ◽  
Bo Zhang ◽  
...  

Biochemical methane potential (BMP) of anaerobic co-digestion (co-AD) feedstocks is an essential basis for optimizing ratios of materials. Given the time-consuming shortage of conventional BMP tests, a rapid estimated method was proposed for BMP of co-AD—with straw and feces as feedstocks—based on near infrared spectroscopy (NIRS) combined with chemometrics. Partial least squares with several variable selection algorithms were used for establishing calibration models. Variable selection methods were constructed by the genetic simulated annealing algorithm (GSA) combined with interval partial least squares (iPLS), synergy iPLS, backward iPLS, and competitive adaptive reweighted sampling (CARS), respectively. By comparing the modeling performances of characteristic wavelengths selected by different algorithms, it was found that the model constructed using 57 characteristic wavelengths selected by CARS-GSA had the best prediction accuracy. For the validation set, the determination coefficient, root mean square error and relative root mean square error of the CARS-GSA model were 0.984, 6.293 and 2.600, respectively. The result shows that the NIRS regression model—constructed with characteristic wavelengths, selected by CARS-GSA—can meet actual detection requirements. Based on a large number of samples collected, the method proposed in this study can realize the rapid and accurate determination of the BMP for co-AD raw materials in biogas engineering.


2013 ◽  
Vol 807-809 ◽  
pp. 1967-1971
Author(s):  
Yan Bai ◽  
Xiao Yan Duan ◽  
Hai Yan Gong ◽  
Cai Xia Xie ◽  
Zhi Hong Chen ◽  
...  

In this paper, the content of forsythoside A and ethanol-extract were rapidly determinated by near-infrared reflectance spectroscopy (NIRS). 85 samples of Forsythiae Fructus harvested in Luoyang from July to September in 2012 were divided into a calibration set (75 samples) and a validation set (10 samples). In combination with the partical least square (PLS), the quantitative calibration models of forsythoside A and ethanol-extract were established. The correlation coefficient of cross-validation (R2) was 0.98247 and 0.97214 for forsythoside A and ethanol-extract, the root-mean-square error of calibration (RMSEC) was 0.184 and 0.570, the root-mean-square error of cross-validation (RMSECV) was 0.81736 and 0.36656. The validation set were used to evaluate the performance of the models, the root-mean-square error of prediction (RMSEP) was 0.221 and 0.518. The results indicated that it was feasible to determine the content of forsythoside A and ethanol-extract in Forsythiae Fructus by near-infrared spectroscopy.


2018 ◽  
Vol 11 (06) ◽  
pp. 1850034
Author(s):  
Hongxia Huang ◽  
Yuanyuan Lv ◽  
Xiaoyi Sun ◽  
Shuangshuang Fu ◽  
Xuefang Lou ◽  
...  

A technique for the determination of tannin content in traditional Chinese medicine injections (TCMI) was developed based on ultraviolet (UV) spectroscopy. Chemometrics were used to construct a mathematical model of absorption spectrum and tannin reference content of Danshen and Guanxinning injections, and the model was verified and applied. The results showed that the established UV-based spectral partial least squares regression (PLS) tannin content model performed well with a correlation coefficient ([Formula: see text]) of 0.952, root mean square error of calibration (RMSEC) of 0.476[Formula: see text][Formula: see text]g/ml, root mean square error of validation (RMSEV) of 1.171[Formula: see text][Formula: see text]g/ml, and root mean square error of prediction (RMSEP) of 0.465[Formula: see text][Formula: see text]g/ml. Pattern recognition models using linear discriminant analysis (LDA) and [Formula: see text] nearest neighbor ([Formula: see text]-NN) classifiers based on UV spectrum could successfully classify different types of injections and different manufacturers. The established method to measure tannin content based on UV spectroscopy is simple, rapid and reliable and provides technical support for quality control of tannin in Chinese medicine injections.


2013 ◽  
Vol 807-809 ◽  
pp. 1978-1983 ◽  
Author(s):  
Cai Xia Xie ◽  
Hai Yan Gong ◽  
Jian Ying Liu ◽  
Jing Wei Lei ◽  
Xiao Yan Duan ◽  
...  

To establish a rapid analytical method for Loganin in Qiju Dihuang Pills (condensed) by Near-infrared Diffuse Reflectance Technique. Collecting NIR spectra by NIR Diffuse Reflectance Spectroscopy, the partial least square calibration model was built. The correlation coefficients (R2) and the root-mean-square error of cross-validation (RMSECV) were 0.99764 and 0.09340, respectively. In the external validation,coefficients of determination (r2) between NIRS and HPLC values was 0.97348,the root-mean-square error of prediction (RMSEP) was 0.08491. The results showed that the method was rapid, accurate, and could be applied to the fast determination of Loganin in Qiju Dihuang Pills (condensed).


2010 ◽  
Vol 16 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Yang Meiyan ◽  
Li Jing ◽  
Nie Shaoping ◽  
Hu Jielun ◽  
Yu Qiang ◽  
...  

Near-infrared spectroscopy (NIRS) was used as a rapid and nondestructive method to determine the content of docosahexaenoic acid (DHA) in powdered oil samples. A total of 82 samples were scanned in the diffuse reflectance mode by Nicolet 5700 FTIR spectrometer and the reference values for DHA was measured by gas chromatography. Calibration equations were developed using partial least-squares regression (PLS) with internal cross-validation. Samples were split in two sets, one set used as calibration (n = 66) whereas the remaining samples (n=16) were used as validation set. Two mathematical treatments (first and second derivative), none (log(1/R)) and standard normal variate as scatter corrections and Savitzky—Golay smoothing were explored. To decide upon the number of PLS factors included in the PLS model, the model with the lowest root mean square error of cross-validation (RMSECV=0.44) for the validation set is chosen. The correlation coefficient (r) between the predicted and the reference results which used as an evaluation parameter for the models is 0.968. The root mean square error of prediction of the final model is 0.59. The results reported in this article demonstrate that FT-NIR measurements can serve as a rapid method to determine DHA in powdered oil.


Sign in / Sign up

Export Citation Format

Share Document