scholarly journals THE CENTRAL POLYNOMIALS OF THE FINITE-DIMENSIONAL UNITARY AND NONUNITARY GRASSMANN ALGEBRAS

2010 ◽  
Vol 03 (02) ◽  
pp. 235-249 ◽  
Author(s):  
C. Bekh-Ochir ◽  
S. A. Rankin

We describe the T-space of central polynomials for both the unitary and the nonunitary finite dimensional Grassmann algebra over a field of characteristic p ≠ 2 (infinite field in the case of the unitary algebra).

2010 ◽  
Vol 09 (05) ◽  
pp. 687-704 ◽  
Author(s):  
C. BEKH-OCHIR ◽  
S. A. RANKIN

We describe the T-space of central polynomials for both the unitary and the nonunitary infinite-dimensional Grassmann algebra over a field of characteristic p≠2 (infinite field in the case of the unitary algebra).


2019 ◽  
Vol 2019 (756) ◽  
pp. 183-226 ◽  
Author(s):  
David Eisenbud ◽  
Bernd Ulrich

AbstractWe prove duality results for residual intersections that unify and complete results of van Straten, Huneke–Ulrich and Ulrich, and settle conjectures of van Straten and Warmt.Suppose that I is an ideal of codimension g in a Gorenstein ring, and {J\subset I} is an ideal with {s=g+t} generators such that {K:=J:I} has codimension s. Let {{\overline{I}}} be the image of I in {{\overline{R}}:=R/K}.In the first part of the paper we prove, among other things, that under suitable hypotheses on I, the truncated Rees ring {{\overline{R}}\oplus{\overline{I}}\oplus\cdots\oplus{\overline{I}}{}^{t+1}} is a Gorenstein ring, and that the modules {{\overline{I}}{}^{u}} and {{\overline{I}}{}^{t+1-u}} are dual to one another via the multiplication pairing into {{{\overline{I}}{}^{t+1}}\cong{\omega_{\overline{R}}}}.In the second part of the paper we study the analogue of residue theory, and prove that, when {R/K} is a finite-dimensional algebra over a field of characteristic 0 and certain other hypotheses are satisfied, the socle of {I^{t+1}/JI^{t}\cong{\omega_{R/K}}} is generated by a Jacobian determinant.


2018 ◽  
Vol 28 (5) ◽  
pp. 339-344
Author(s):  
Andrey V. Zyazin ◽  
Sergey Yu. Katyshev

Abstract Necessary conditions for power commuting in a finite-dimensional algebra over a field are presented.


Author(s):  
Angelo Bianchi ◽  
Samuel Chamberlin

We investigate the representations of the hyperalgebras associated to the map algebras [Formula: see text], where [Formula: see text] is any finite-dimensional complex simple Lie algebra and [Formula: see text] is any associative commutative unitary algebra with a multiplicatively closed basis. We consider the natural definition of the local and global Weyl modules, and the Weyl functor for these algebras. Under certain conditions, we prove that these modules satisfy certain universal properties, and we also give conditions for the local or global Weyl modules to be finite-dimensional or finitely generated, respectively.


1963 ◽  
Vol 15 ◽  
pp. 285-290 ◽  
Author(s):  
Earl J. Taft

Let A be a finite-dimensional associative algebra over a field F. Let R denote the radical of A. Assume that A/R is separable. Then it is well known (the Wedderburn principal theorem) that A possesses a Wedderburn decomposition A = S + R (semi-direct), where S is a separable subalgebra isomorphic with A/R. We call S a Wedderburn factor of A.


1982 ◽  
Vol 34 (4) ◽  
pp. 797-805 ◽  
Author(s):  
David A. Hill

A module is uniserial in case its submodules are linearly ordered by inclusion. A ring R is left (right) serial if it is a direct sum of uniserial left (right) R-modules. A ring R is serial if it is both left and right serial. It is well known that for artinian rings the property of being serial is equivalent to the finitely generated modules being a direct sum of uniserial modules [8]. Results along this line have been generalized to more arbitrary rings [6], [13].This article is concerned with investigating rings whose indecomposable injective modules are uniserial. The following question is considered which was first posed in [4]. If an artinian ring R has all indecomposable injective modules uniserial, does this imply that R is serial? The answer is yes if R is a finite dimensional algebra over a field. In this paper it is shown, provided R modulo its radical is commutative, that R has every left indecomposable injective uniserial implies that R is right serial.


1995 ◽  
Vol 138 ◽  
pp. 113-140 ◽  
Author(s):  
E. De Negri ◽  
G. Valla

Let k be an infinite field and A a standard G-algebra. This means that there exists a positive integer n such that A = R/I where R is the polynomial ring R := k[Xv …, Xn] and I is an homogeneous ideal of R. Thus the additive group of A has a direct sum decomposition A = ⊕ At where AiAj ⊆ Ai+j. Hence, for every t ≥ 0, At is a finite-dimensional vector space over k. The Hilbert Function of A is defined by


2016 ◽  
Vol 26 (06) ◽  
pp. 1125-1140 ◽  
Author(s):  
Lucio Centrone ◽  
Viviane Ribeiro Tomaz da Silva

Let [Formula: see text] be a finite abelian group. As a consequence of the results of Di Vincenzo and Nardozza, we have that the generators of the [Formula: see text]-ideal of [Formula: see text]-graded identities of a [Formula: see text]-graded algebra in characteristic 0 and the generators of the [Formula: see text]-ideal of [Formula: see text]-graded identities of its tensor product by the infinite-dimensional Grassmann algebra [Formula: see text] endowed with the canonical grading have pairly the same degree. In this paper, we deal with [Formula: see text]-graded identities of [Formula: see text] over an infinite field of characteristic [Formula: see text], where [Formula: see text] is [Formula: see text] endowed with a specific [Formula: see text]-grading. We find identities of degree [Formula: see text] and [Formula: see text] while the maximal degree of a generator of the [Formula: see text]-graded identities of [Formula: see text] is [Formula: see text] if [Formula: see text]. Moreover, we find a basis of the [Formula: see text]-graded identities of [Formula: see text] and also a basis of multihomogeneous polynomials for the relatively free algebra. Finally, we compute the [Formula: see text]-graded Gelfand–Kirillov (GK) dimension of [Formula: see text].


1982 ◽  
Vol 91 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Stephen Donkin

In (1) it is claimed that the main results of that paper have applications to the representation theory of algebraic groups, of polycyclic groups and of Lie algebras. An application to algebraic groups is given in Corollary 6·4 of (1), the applications to polycyclic groups are given in (2), the purpose of this work is to deal with the outstanding case of enveloping algebras. To make use of the results of (1), in this context, we show that the Hopf algebra dual of the enveloping algebra of a finite dimensional Lie algebra over a field of characteristic zero is quasi-affine (see § 1·5). This is done by an easy field extension argument and a generalization, to the Hopf algebra dual of the smash product of Hopf algebras, of Proposition 1·6·3 of (2) on the dual of the group algebra of a semidirect product of groups. Since this paper is aimed at those readers interested in enveloping algebras, the Hopf theoretic aspects are dealt with at a fairly leisurely pace.


Sign in / Sign up

Export Citation Format

Share Document