scholarly journals Meet-reducible submaximal clones determined by two central relations

2019 ◽  
Vol 12 (04) ◽  
pp. 1950064
Author(s):  
Y. L. T. Jeufack ◽  
L. Diekouam ◽  
E. R. A. Temgoua

Let [Formula: see text] and [Formula: see text] be two central relations on a finite set [Formula: see text]. It is known from Rosenberg’s classification theorem (1965) that the clones [Formula: see text] and [Formula: see text] which consist of all operations on [Formula: see text] that preserve [Formula: see text], respectively, [Formula: see text] are among the maximal clones on [Formula: see text]. In this paper, we find all central relations [Formula: see text] such that the clone [Formula: see text] is a maximal subclone of [Formula: see text], where [Formula: see text] is a fixed central relation.

1999 ◽  
Vol 10 (02) ◽  
pp. 207-214 ◽  
Author(s):  
PHAN H. LOI

Using an idea due to Popa, we can associate a commuting square of factors to any given finite set of automorphisms acting on an inclusion of factors of finite index. We use this setting to obtain a simple proof of Popa's classification theorem of strongly outer actions of finitely generated discrete strongly amenable groups on a strongly amenable inclusion of type II 1 factors. We also obtain a new complete outer conjugacy invariant for arbitrary automorphisms, which contains the higher obstruction of Kawahigashi and the standard invariant as a special case.


Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter explains and proves the Nielsen–Thurston classification of elements of Mod(S), one of the central theorems in the study of mapping class groups. It first considers the classification of elements for the torus of Mod(T² before discussing higher-genus analogues for each of the three types of elements of Mod(T². It then states the Nielsen–Thurston classification theorem in various forms, as well as a connection to 3-manifold theory, along with Thurston's geometric classification of mapping torus. The rest of the chapter is devoted to Bers' proof of the Nielsen–Thurston classification. The collar lemma is highlighted as a new ingredient, as it is also a fundamental result in the hyperbolic geometry of surfaces.


Author(s):  
P. A. B. Pleasants

This note is concerned with infinite sequences whose terms are chosen from a finite set of symbols. A segment of such a sequence is a set of one or more consecutive terms, and a repetition is a pair of finite segments that are adjacent and identical. A non-repetitive sequence is one that contains no repetitions.


2020 ◽  
Vol 28 (5) ◽  
pp. 727-738
Author(s):  
Victor Sadovnichii ◽  
Yaudat Talgatovich Sultanaev ◽  
Azamat Akhtyamov

AbstractWe consider a new class of inverse problems on the recovery of the coefficients of differential equations from a finite set of eigenvalues of a boundary value problem with unseparated boundary conditions. A finite number of eigenvalues is possible only for problems in which the roots of the characteristic equation are multiple. The article describes solutions to such a problem for equations of the second, third, and fourth orders on a graph with three, four, and five edges. The inverse problem with an arbitrary number of edges is solved similarly.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jose J. Silva ◽  
Jose R. Espinoza ◽  
Jaime A. Rohten ◽  
Esteban S. Pulido ◽  
Felipe A. Villarroel ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 773
Author(s):  
Amichai Painsky ◽  
Meir Feder

Learning and making inference from a finite set of samples are among the fundamental problems in science. In most popular applications, the paradigmatic approach is to seek a model that best explains the data. This approach has many desirable properties when the number of samples is large. However, in many practical setups, data acquisition is costly and only a limited number of samples is available. In this work, we study an alternative approach for this challenging setup. Our framework suggests that the role of the train-set is not to provide a single estimated model, which may be inaccurate due to the limited number of samples. Instead, we define a class of “reasonable” models. Then, the worst-case performance in the class is controlled by a minimax estimator with respect to it. Further, we introduce a robust estimation scheme that provides minimax guarantees, also for the case where the true model is not a member of the model class. Our results draw important connections to universal prediction, the redundancy-capacity theorem, and channel capacity theory. We demonstrate our suggested scheme in different setups, showing a significant improvement in worst-case performance over currently known alternatives.


2021 ◽  
Vol 82 (2) ◽  
Author(s):  
Robin Hirsch ◽  
Jaš Šemrl

AbstractThe motivation for using demonic calculus for binary relations stems from the behaviour of demonic turing machines, when modelled relationally. Relational composition (; ) models sequential runs of two programs and demonic refinement ($$\sqsubseteq $$ ⊑ ) arises from the partial order given by modeling demonic choice ($$\sqcup $$ ⊔ ) of programs (see below for the formal relational definitions). We prove that the class $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) of abstract $$(\le , \circ )$$ ( ≤ , ∘ ) structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $$(\le , \circ )$$ ( ≤ , ∘ ) formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) . We prove that a finite representable $$(\le , \circ )$$ ( ≤ , ∘ ) structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representation property holds for finite structures.


1996 ◽  
Vol 28 (2) ◽  
pp. 336-337
Author(s):  
Hulling Le

Two sets of k labelled points, or configurations, in ℝm are defined to have the same shape if they differ only in translation, rotation and scaling. An important matter in practice is the estimation of the shape of the means; the shape determined by the means of data on the vertices of configurations. However, statistical models for vertices-based shapes always involve some unknown samplewise nuisance parameters associated with ambiguity of location, rotation and scaling. The use of procrustean mean shapes for a finite set of configurations, which are usually formulated directly in terms of their vertices, will enable one to eliminate these nuisance parameters.


Sign in / Sign up

Export Citation Format

Share Document