Polymer-in-salt solid electrolytes for lithium-ion batteries

2019 ◽  
Vol 12 (06) ◽  
pp. 1930006 ◽  
Author(s):  
Chengjun Yi ◽  
Wenyi Liu ◽  
Linpo Li ◽  
Haoyang Dong ◽  
Jinping Liu

Solid-state polymer lithium-ion batteries with better safety and higher energy density are one of the most promising batteries, which are expected to power future electric vehicles and smart grids. However, the low ionic conductivity at room temperature of solid polymer electrolytes (SPEs) decelerates the entry of such batteries into the market. Creating polymer-in-salt solid electrolytes (PISSEs) where the lithium salt contents exceed 50[Formula: see text]wt.% is a viable technology to enhance ionic conductivity at room temperature of SPEs, which is also suitable for scalable production. In this review, we first clarify the structure and ionic conductivity mechanism of PISSEs by analyzing the interactions between lithium salt and polymer matrix. Then, the recent advances on polyacrylonitrile (PAN)-based PISSEs and polycarbonate derivative-based PISSEs will be reviewed. Finally, we propose possible directions and opportunities to accelerate the commercializing of PISSEs for solid polymer Li-ion batteries.

2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Qolby Sabrina ◽  
Titik Lestariningsih ◽  
Christin Rina Ratri ◽  
Achmad Subhan

Solid polymer electrolyte (SPE) appropriate to solve packaging leakage and expansion volume in lithium-ion battery systems. Evaluation of electrochemical performance of SPE consisted of mixture lithium salt, solid plasticizer, and polymer precursor with different ratio. Impedance spectroscopy was used to investigate ionic conduction and dielectric response lithium bis(trifluoromethane)sulfony imide (LiTFSI) salt, and additive succinonitrile (SCN) plasticizer. The result showing enhanced high ionic conductivity. In half-cell configurations, wide electrochemical stability window of the SPE has been tested. Have stability window at room temperature, indicating great potential of SPE for application in lithium ion batteries. Additive SCN contribute to forming pores that make it easier for the li ion to move from the anode to the cathode and vice versa for better perform SPE. Pore of SPE has been charaterization with FE-SEM. Additive 5% w.t SCN shows the best ionic conductivity with 4.2 volt wide stability window and pretty much invisible pores.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1237 ◽  
Author(s):  
Yu Jiang ◽  
Xuemin Yan ◽  
Zhaofei Ma ◽  
Ping Mei ◽  
Wei Xiao ◽  
...  

Solid polymer electrolytes (SPEs) have attracted considerable attention due to the rapid development of the need for more safety and powerful lithium ion batteries. The prime requirements of solid polymer electrolytes are high ion conductivity, low glass transition temperature, excellent solubility to the conductive lithium salt, and good interface stability against Li anode, which makes PEO and its derivatives potential candidate polymer matrixes. This review mainly encompasses on the synthetic development of PEO-based SPEs (PSPEs), and the potential application of the resulting PSPEs for high performance, all-solid-state lithium ion batteries.


2020 ◽  
Vol 4 (3) ◽  
pp. 44
Author(s):  
Xinyi Mei ◽  
Wendy Zhao ◽  
Qiang Ma ◽  
Zheng Yue ◽  
Hamza Dunya ◽  
...  

Three new crosslinked polystyrene nanoparticles covalently attached with low lattice energy lithium salt moieties were synthesized: poly(styrene lithium trifluoromethane sulphonyl imide) (PSTFSILi), poly(styrene lithium benzene sulphonyl imide) (PSPhSILi), and poly(styrene lithium sulfonyl-1,3-dithiane-1,1,3,3-tetraoxide) (PSDTTOLi). A series of solid polymer electrolytes (SPEs) were formulated by mixing these lithium salts with high molecular weight poly(ethylene oxide), poly(ethylene glycol dimethyl ether), and lithium bis(fluorosulfonyl)imide. The crosslinked nano-sized polymer salts improved film strength and decreased the glass transition temperature (Tg) of the polymer electrolyte membranes. An enhancement in both ionic conductivity and thermal stability was observed. For example, the SPE film containing PSTFSILi displayed ionic conductivity of 7.52 × 10−5 S cm−1 at room temperature and 3.0 × 10−3 S cm−1 at 70 °C, while the SPE film containing PSDTTOLi showed an even better performance of 1.54 × 10−4 S cm−1 at room temperature and 3.23 × 10−3 S cm−1 at 70 °C.


RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 38223-38227 ◽  
Author(s):  
Chih-Chia Cheng ◽  
Duu-Jong Lee

Supramolecular solid polymer electrolytes provide mechanical integrity and well-defined ion-conducting paths for rapid ion transport that can be applied in high-performance lithium-ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (54) ◽  
pp. 43581-43588 ◽  
Author(s):  
Juan Wang ◽  
Xiaohui He ◽  
Hongyu Zhu ◽  
Defu Chen

Solid polymer electrolytes with high ionic conductivity have been prepared based on an imidazolium-functionalized norbornene ionic liquid block copolymer.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Yingjian Zhao ◽  
Yong Wang

AbstractPolyethylene oxide (PEO)-based solid polymer electrolytes (SPEs) have important significance for the development of next-generation rechargeable lithium-ion batteries. However, strong coordination between lithium ions and PEO chains results the ion conductivity usually lower than the expectation. In this study, sub-micron montmorillonite is incorporated into the PEO frames as Lewis base center which enables the lithium ions to escape the restraint of PEO chains. After involving montmorillonite (MMT) into the SPEs, the ionic conductivity of SPEs is 4.7 mS cm− 1 at 70 °C which shows a comparable value with that of liquid electrolyte. As coupling with LiFePO4 material, the battery delivers a high discharge capacity of 150.3 mAh g− 1 and an excellent rate performance with a capacity of 111.8 mAh g− 1 at 0.16 C and maintains 58.2 mAh g− 1 at 0.8 C. This study suggests that the customized incorporation of Lewis base materials could offer a promising solution for achieving high-performance PEO-based solid-state electrolyte.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1206
Author(s):  
Xuansen Fang ◽  
Yaolong He ◽  
Xiaomin Fan ◽  
Dan Zhang ◽  
Hongjiu Hu

The prediction of electrochemical performance is the basis for long-term service of all-solid-state-battery (ASSB) regarding the time-aging of solid polymer electrolytes. To get insight into the influence mechanism of electrolyte aging on cell fading, we have established a continuum model for quantitatively analyzing the capacity evolution of the lithium battery during the time-aging process. The simulations have unveiled the phenomenon of electrolyte-aging-induced capacity degradation. The effects of discharge rate, operating temperature, and lithium-salt concentration in the electrolyte, as well as the electrolyte thickness, have also been explored in detail. The results have shown that capacity loss of ASSB is controlled by the decrease in the contact area of the electrolyte/electrode interface at the initial aging stage and is subsequently dominated by the mobilities of lithium-ion across the aging electrolyte. Moreover, reducing the discharge rate or increasing the operating temperature can weaken this cell deterioration. Besides, the thinner electrolyte film with acceptable lithium salt content benefits the durability of the ASSB. It has also been found that the negative effect of the aging electrolytes can be relieved if the electrolyte conductivity is kept being above a critical value under the storage and using conditions.


Sign in / Sign up

Export Citation Format

Share Document