Congestion mitigation on high voltage power lines using multiple TCSC & UPFC

Author(s):  
Anwar S. Siddiqui ◽  
Tanmoy Deb

With severe overload on transmission lines, further exchange of power flow is affected due to congestion on power transmission lines. This paper investigates the effect of Flexible AC Transmission System (FACTS) devices like TCSC and UPFC in congestion mitigation. The proposal uses multiple FACTS devices of similar type and investigates their effect on congestion mitigation in high voltage transmission lines. This proposal is tested on IEEE-14 bus system.

2019 ◽  
Vol 8 (4) ◽  
pp. 11456-11459

Generally, power system faces the problem to transfer power from one system to another system without any fluctuations, with minimal of system losses. To overcome this problems, a flexible ac transmission system is implemented in this paper. In present scenario, facts devices are used to reduce the transmission losses for improvising transmission capacity and also to improve the system capability. Unified Power Flow Controller plays a most prominent role in FACTS controller to improve the system stability. The structure of UPFC is combination of back-back converters with boosting and zigzag transformer. This type of UPFC system consists of high losses due to presence of magnetic properties in this transformer. With this, a transformer-less multilevel inverter based UPFC topology is proposed in this paper. This paper focuses on the modulation of transformerless UPFC with PSO, which controlsfundamental frequency for better controlling of active and reactive power, harmonic minimization, and improvement in efficiency of system by controlling DC link voltage


Author(s):  
Ben Slimane Abdelkader ◽  
Chelleli Benachiba

Interline Power Flow Controller (IPFC) is one of the latest generation Flexible AC Transmission system (FACTS). It is able to control simultaneously the power flow of multiple transmission lines. This paper presents a study of the impact the IPFC on profile of voltage, real and reactive power flow in transmission line in power system. The obtained results are interesting.


Author(s):  
P. P. TAMBE ◽  
K. D. JOSHI

This paper is showcasing review of distributed static series compensator ( DSSC) & explains the effect of insertion of DSSC in transmission line power flow control. FACTS ( Flexible AC Transmission System) technology the aspect of Power Electronics offers High speed & reliability of switching & thus the value of electric energy is enhance. Along with merits there are certain problems offered by FACTS technology which leads to complexity in operation & overall cost investment becomes large. The solution to this is DFACTS technology i.e Distributed FACTS devices can be used in distributed position and DSSC belongs to DFACTS family.


2014 ◽  
Vol 704 ◽  
pp. 190-194 ◽  
Author(s):  
Min Wang ◽  
Dan Zhen Gu

With the widely application use of UHV(ultra- high- voltage) transmission,increased the system low frequency oscillations,and flexible application of high-voltage direct current transmission (HVDC) and flexible ac transmission system (FACTS) can improve the system damping oscillation inhibition. This paper Based on the research results in recent years, classify& summarize HVDC and FACTS devices the theoretical basis and the main application places, and according to the way of access system of parallel, series and parallel hybrid FACTS devices stable controller design and optimization are summarized and classified.


Author(s):  
M. EL-Azab ◽  
W. A. Omran ◽  
S. F. Mekhamer ◽  
H. E. A. Talaat

This study presents a probabilistic multi-objective optimization approach to obtain the optimal locations and sizes of static var compensator (SVC) and thyristor-controlled series capacitor (TCSC) in a power transmission network with large level of wind generation. In this study, the uncertainties of the wind power generation and correlated load demand are considered. The uncertainties are modeled in this work using the points estimation method (PEM). The optimization problem is solved using the Multi-objective particle swarm optimization (MOPSO) algorithm to find the best position and rating of the flexible AC transmission system (FACTS) devices. The objective of the problem is to maximize the system loadability while minimizing the power losses and FACTS devices installation cost. Additionally, a technique based on fuzzy decision-making approach is employed to extract one of the Pareto optimal solutions as the best compromise one. The proposed approach is applied on the modified IEEE 30-bus system. The numerical results evince the effectiveness of the proposed approach and shows the economic benefits that can be achieved when considering the FACTS controller.


Secure and reliable operation of the power system is a critical issue for large, complicated, and interconnected power system networks. Security constraints such as thermal limits of transmission lines and bus voltage limits must be satisfied under any operating point in order to deliver reliable power to the consumers. One of the best alternative solutions of improvement of the security of power system is the use of flexible AC transmission systems (FACTS) devices. FACTS devices can be used to limit the power flow on the overloaded line and to increase the use of alternative paths to improve power transmission capacity. This chapter briefly describes all three categories of FACTS devices, namely shunt controllers (static synchronous compensator, static var compensator, thyristor-controlled reactor, thyristor switched reactor, thyristor switched capacitor), series controllers (static synchronous series compensator, thyristor controlled series capacitor, thyristor-controlled series reactor), and combined series-shunt controllers (unified power flow controller).


Sign in / Sign up

Export Citation Format

Share Document