Application of AI techniques for modeling the performance measures in milling of 7075-T6 hybrid aluminum metal matrix composites

Author(s):  
T. Mohanraj

The prediction of performance measures is an essential one for manufacturers to increase the service life. This paper deals with the application of Artificial Intelligence (AI) to predict the performance measures like surface roughness, material removal rate, and flank wear during the milling process from the experimental data. The milling experiments were conducted in wet conditions based on the Response Surface Methodology (RSM) design of experiments. The spindle speed, feed rate, and axial depth of cut were considered as process parameters. The experimental data were used to develop the regression model, Mamdani fuzzy inference system, Backpropagation Neural Network (BPNN), and Adaptive Neuro-Fuzzy Inference System (ANFIS) model. The output of regression, fuzzy, neural network, and ANFIS model was compared with the experimental data, and predicted results were found to be in good conformity with the measured data. The prediction capability of the quadratic and Artificial Neural Network (ANN) model was very close to experimentally measured values and the quadratic model had an accuracy of 97.89% for surface roughness, 98.38% for material removal rate (MRR), and 95.72% for flank wear.

2019 ◽  
Vol 7 (1) ◽  
pp. 261-274 ◽  
Author(s):  
Muhammad Akmal Mohd Zakaria ◽  
Raja Izamshah Raja Abdullah ◽  
Mohd Shahir Kasim ◽  
Mohamad Halim Ibrahim

Sustainability plays an important role in manufacturing industries through economically-sound processes that able to minimize negative environmental impacts while having the social benefits. In this present study, the modeling of wire electrical discharge machining (WEDM) cutting process using an artificial neural network (ANN) for prediction has been carried out with a focus on sustainable production. The objective was to develop an ANN model for prediction of two sustainable measures which were material removal rate (as an economic aspect) and surface roughness (as a social aspect) of titanium alloy with ten input parameters. By concerning environmental pollution due to its intrinsic characteristics such as liquid wastes, the water-based dielectric fluid has been used in this study which represents an environmental aspect in sustainability. For this purpose, a feed-forward backpropagation ANN was developed and trained using the minimal experimental data. The other empirical modelling techniques (statistics based) are less in flexibility and prediction accuracy. The minimal, vague data and nonlinear complex input-output relationship make this ANN model simple and perfects method in the manufacturing environment as well as in this study. The results showed good agreement with the experimental data confirming the effectiveness of the ANN approach in the modeling of material removal rate and surface roughness of this cutting process.


2011 ◽  
Vol 314-316 ◽  
pp. 341-345
Author(s):  
Bo Di Cui

Accurate predictive modelling is an essential prerequisite for optimization and control of production in modern manufacturing environments. In this paper, an adaptive neuro-fuzzy inference system (ANFIS) model was developed to predict the surface roughness in high speed turning of AISI P 20 tool steel. Experiments were designed and performed to collect the training and testing data for the proposed model based on orthogonal array. For decreasing the complexity of the ANFIS structure, principal component analysis (PCA) was used to deal with the experimental data. The comparison between predictions and experimental data showed that the proposed method was both effective and efficient for modelling surface roughness.


2010 ◽  
Vol 44-47 ◽  
pp. 2293-2298 ◽  
Author(s):  
Xiong Hua Guo ◽  
Mao Fu Liu ◽  
Chang Rong Zhao

For improving surface integrity and machining quality after precision grinding of the parts of nano-ceramic coating, and investigating its prediction technique of surface roughness, the prediction model of surface roughness in precision surface grinding of nano-ceramic coating based on adaptive network-based fuzzy inference system (ANFIS) was proposed in this paper. Then, the proposed prediction model was improved by hybrid Taguchi genetic algorithm (HTGA). At last, by comparative analysis of prediction results from traditional BP neural network model, simple ANFIS model and improved ANFIS model, the effectiveness of the proposed model was verified using grinding parameters and measured surface roughness in grinding tests as training and testing samples. It showed that the prediction accuracy of the improved ANFIS model proposed in this paper was higher, and it was an effective prediction method of surface roughness in precision grinding of nano-ceramic coating.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 922 ◽  
Author(s):  
C. J. Luis Pérez

Technological tables are very important in electrical discharge machining to determine optimal operating conditions for process variables, such as material removal rate or electrode wear. Their determination is of great industrial importance and their experimental determination is very important because they allow the most appropriate operating conditions to be selected beforehand. These technological tables are usually employed for electrical discharge machining of steel, but their number is significantly less in the case of other materials. In this present research study, a methodology based on using a fuzzy inference system to obtain these technological tables is shown with the aim of being able to select the most appropriate manufacturing conditions in advance. In addition, a study of the results obtained using a fuzzy inference system for modeling the behavior of electrical discharge machining parameters is shown. These results are compared to those obtained from response surface methodology. Furthermore, it is demonstrated that the fuzzy system can provide a high degree of precision and, therefore, it can be used to determine the influence of these machining parameters on technological variables, such as roughness, electrode wear, or material removal rate, more efficiently than other techniques.


Sign in / Sign up

Export Citation Format

Share Document