scholarly journals NANO ACCURACY ELEVATION OF ULTRA-PRECISION MACHINING USING OPTICAL FIBER LASER ENCODER SYSTEM

2012 ◽  
Vol 06 ◽  
pp. 583-588
Author(s):  
Geon Lee ◽  
Sung-Hyun Kim ◽  
Nam-Su Kwak ◽  
Jae-Yeol Kim

The ultra-precision products which recently experienced high in demands had included the large areas of most updated technologies, for example, the semiconductor, the computer, the aerospace, the media information, the precision machining. For early 21st century, it was expected that the ultra-precision technologies would be distributed more throughout the market and required securing more nation-wise advancements. Furthermore, there seemed to be increasing in demand of the single crystal diamond tool which was capable of the ultra-precision machining for parts requiring a high degree of complicated details which were more than just simple wrapping and policing. Moreover, the highest degree of precision is currently at 50nm for some precision parts but not in all. The machining system and technology should be at very high preformed level in order to accomplish this degree of the ultra-precision.

2011 ◽  
Vol 211 (12) ◽  
pp. 2152-2159 ◽  
Author(s):  
Yilong Wang ◽  
Qingliang Zhao ◽  
Yuanjiang Shang ◽  
Pengxiang Lv ◽  
Bing Guo ◽  
...  

Author(s):  
Shaojian Zhang ◽  
Pan Guo ◽  
Zhiwen Xiong ◽  
Suet To

Shear angle is classically considered constant. In the study, a series of straight orthogonal cutting tests of ultra-precision machining revealed that shear angle cyclically evolved with each lamellar chip formation, i.e. cyclic shear angle. It grew up from an initial shear angle of 0° to a final shear angle 90°- α ( α: tool rake angle) and underwent a series of transient shear angles like classical shear angles and a critical shear angle. The critical shear angle is the sum of the half of the tool rake angle and the characteristic shear angle determined by material anisotropy without the friction effect. Moreover, a new model was developed. Further, a series of face turning tests of ultra-precision machining verified that the cyclic shear angle was the intrinsic mechanism of cyclic cutting forces and lamellar chip formation to induce twin-peak high-frequency multimode diamond-tool-tip vibration. Significantly, the study draws up an understanding of shear angle for the discrepancy among the classical models.


2013 ◽  
Vol 552 ◽  
pp. 201-206
Author(s):  
Su Juan Wang ◽  
Suet To ◽  
Xin Du Chen

The technology of ultra-precision machining with single crystal diamond tool produces advanced components with higher dimensional accuracy and better surface quality. The cutting-induced heat results in high temperature and stress at the chip-tool and tool-workpiece interfaces therefore affects the materials and the cutting tool as well as the surface quality. In the ultra-precision machining of al6061, the cutting-induced heat generates precipitates on the machined surface and those precipitates induce imperfections on the machined surface. This paper uses the time-temperature-precipitation characteristics of aluminum alloy 6061 (al6061) to investigate the effect of feed rate on the cutting-induced heat generation in ultra-precision multi-axis milling process. The effect of feed rate and feed direction on the generation of precipitates and surface roughness in ultra-precision raster milling (UPRM) is studied. Experimental results show that heat generation in horizontal cutting is less than that in vertical cutting and a larger feed rate generates more heat on the machined workpiece. A smaller feed rate produces a better surface finish and under a larger feed rate, scratch marks are produced by the generated precipitates and increase surface roughness.


2013 ◽  
Vol 25 ◽  
pp. 157-173 ◽  
Author(s):  
Nam Su Kwak ◽  
Jae Yeol Kim ◽  
Dae Gwang Park

In this study, piezoelectric actuator, flexure guide, power transmission element and control method are considered for nanopositioning system apparatus. The main objectives of this thesis were to develop 2-axis nanostage which enables 2-axis control with the aid of piezoelectric actuator, and to improve the precision of the ultra-precision lathe (UP2) which is responsible for the ductile mode machining of the hardened-brittle material where the machining uses a the single-crystal diamond. Through simulation and experiments on ultra-precision positioning, stability and priority of the nanopositioning system with 2-axis nanostage and control algorithm are developed using Matlab/Simulink. Then the system, is applied to analyze surface morphology of the titanium alloy (Ti-6Al-4V)


2015 ◽  
Vol 82 (5-8) ◽  
pp. 1141-1152 ◽  
Author(s):  
C. Y. Chan ◽  
L. H. Li ◽  
W. B. Lee ◽  
H. C. Wong

2019 ◽  
Vol 13 (2) ◽  
pp. 185-190
Author(s):  
Hideo Takino ◽  
Yoshimi Takeuchi ◽  
◽  

Waviness tends to be generated on cut surfaces even when an ultraprecision milling machine with a single-crystal diamond tool is used. The present study deals with the reduction of waviness by controlling the feeding mechanisms of the milling machine. A machining experiment on a spherical surface of a mirror element in a mirror array showed that the machined surface exhibited periodic waviness with a height of 30 nm and a wavelength of 300 μm. To investigate the reason for such waviness, a slope was machined under simultaneous multiaxis motion control of the feeding mechanisms of the milling machine. This proved that the interpolation errors of the encoders used in the milling machine produce the waviness on the machined surface when machining is carried out under simultaneous multiaxis motion control. To reduce such interpolation errors, the positioning accuracy of the machine stages was measured using a laser interferometer. On the basis of the measured results, the feeding mechanisms were compensated such that the positioning errors including the interpolation errors were corrected. Using the machine with the compensated feeding system, a mirror element was shaped. Consequently, waviness was reduced and the surface smoothness was less than 10 nm, demonstrating that such compensation can produce superior optical surfaces.


Sign in / Sign up

Export Citation Format

Share Document