LANDAU QUANTIZATION FOR A NEUTRAL PARTICLE IN THE PRESENCE OF TOPOLOGICAL DEFECTS

2012 ◽  
Vol 18 ◽  
pp. 101-104
Author(s):  
L. R. RIBEIRO ◽  
K. BAKKE ◽  
C. FURTADO

In this short communication, we study the Landau levels in the non-relativistic quantum dynamics of a neutral particle which possesses a permanent magnetic dipole moment interacting with an external electric field in curved spacetime background with the presence or absence of a torsion field. We show that the presence of the topological defect breaks the infinite degeneracy of the Landau levels.

2010 ◽  
Vol 19 (01) ◽  
pp. 85-96 ◽  
Author(s):  
K. BAKKE ◽  
C. FURTADO

In this paper we study the Landau levels arising within the relativistic dynamics of a neutral particle which possesses a permanent magnetic dipole moment interacting with an external electric field in the curved space–time background with the presence of a torsion field. We use the Aharonov–Casher effect to couple this neutral particle with the electric field in this curved background. The eigenfunction and eigenvalues of the Hamiltonian are obtained. We show that the presence of the topological defect breaks the infinite degeneracy of the relativistic Landau levels arising in this system. We study the nonrelativistic limit of the eigenvalues and compare these results with cases studied earlier.


2011 ◽  
Vol 11 (5&6) ◽  
pp. 444-455
Author(s):  
Knut Bakke ◽  
Cláudio Furtado

In this work, we propose a new formulation allowing to realize the holonomic quantum computation with neutral particles with a permanent magnetic dipole moments interacting with an external electric field in the presence of a topological defect. We show that both the interaction of the electric field with the magnetic dipole moment and the presence of topological defect generate independent contributions to the geometric quantum phases which can be used to describe any arbitrary rotation on the magnetic dipole moment without using the adiabatic approximation.


Open Physics ◽  
2010 ◽  
Vol 8 (6) ◽  
Author(s):  
Knut Bakke ◽  
Lincoln Ribeiro ◽  
Claudio Furtado

AbstractIn this contribution we investigate the non-relativistic quantum dynamics of induced electric dipoles in the presence of a topological defect. We propose an analog of Landau quantization for neutral atoms, where a electric dipole is induced by the electromagnetic field configuration. We investigate this system in the presence of a topological defect and show that it breaks the infinite degeneracy of Landau levels.


2015 ◽  
Vol 362 ◽  
pp. 196-207 ◽  
Author(s):  
F.S. Azevedo ◽  
Edilberto O. Silva ◽  
Luis B. Castro ◽  
Cleverson Filgueiras ◽  
D. Cogollo

Author(s):  
Mohammad Rizwen Ur Rahman ◽  
Tae Joon Kwak ◽  
Jörg C. Woehl ◽  
Woo-Jin Chang

Abstract In dielectrophoresis, a neutral particle experiences a partial charge separation, i.e. induced net dipole moment, when exposed to a non-uniform electric field, and this leads translational movement of the particle. This induced attractive or repulsive motion of the particle suspended in a fluid is known as dielectrophoresis (DEP). In this paper, we have characterized the strength of DEP traps depending on geometry. Three different micro-trap geometries, i.e. triangle, square and circle, were tested to characterize the effect of trap shape on trap stiffness experimentally and numerically using single particle immobilized in the trap. The maximum DEP force generated in triangular μ-trap was found largest among tested geometries. The maximum DEP force of square and circular trap was found around 68.4% and 79.1% of triangular μ-trap, respectively. The trajectory analysis using trapped single particle revealed that the stiffness of circular μ-trap is 1.23 and 1.34 times stronger than the triangular and square μ-trap, respectively. These results will provide useful information in DEP trap geometry designing to enhance trapping efficiency.


2006 ◽  
Vol 84 (6-7) ◽  
pp. 531-536
Author(s):  
M A Metlitski

It is well known that fermion zero modes concentrated in the core of a topological defect can endow the defect with highly nontrivial physical properties. A particular example of this phenomenon, due to Witten, is the so-called string superconductivity, when the application of an electric field along the string leads to the appearance of a persistent current in the string direction. In this paper, I will show that a current along the string can also be induced by placing the string in an environment with a nonzero fermion chemical potential and temperature. The resulting current is exactly calculable and topological in nature. I will also discuss how the interest in this problem was motivated by the study of topological defects in dense quark matter. PACS No.: 11.27.+d


2020 ◽  
Vol 35 (20) ◽  
pp. 2050101
Author(s):  
Faizuddin Ahmed

In this paper, we study the relativistic quantum dynamics of spin-0 scalar charged particles with a magnetic quantum flux produced by topological defects in a rotating cosmic string space–time. We solve the Klein–Gordon equation subject to Coulomb-type scalar and vector potentials in the considered framework and obtain the energy eigenvalues and eigenfunctions and analyze the analogue effect to Aharonov–Bohm effect for bound states.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Fabiano M. Andrade ◽  
Cleverson Filgueiras ◽  
Edilberto O. Silva

In this paper the relativistic quantum dynamics of a spin-1/2 neutral particle with a magnetic moment μ in the cosmic string spacetime is reexamined by applying the von Neumann theory of self-adjoint extensions. Contrary to previous studies where the interaction between the spin and the line of charge is neglected, here we consider its effects. This interaction gives rise to a point interaction: ∇·E=(2λ/α)δ(r)/r. Due to the presence of the Dirac delta function, by applying an appropriated boundary condition provided by the theory of self-adjoint extensions, irregular solutions for the Hamiltonian are allowed. We address the scattering problem obtaining the phase shift, S-matrix, and the scattering amplitude. The scattering amplitude obtained shows a dependency with energy which stems from the fact that the helicity is not conserved in this system. Examining the poles of the S-matrix we obtain an expression for the bound states. The presence of bound states for this system has not been discussed before in the literature.


Sign in / Sign up

Export Citation Format

Share Document