Volume 13: Micro- and Nano-Systems Engineering and Packaging
Latest Publications


TOTAL DOCUMENTS

16
(FIVE YEARS 16)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791884652

Author(s):  
Che-Fu Su ◽  
Xinrui Xiang ◽  
Jirui Wang ◽  
Edward Fratto ◽  
Majid Charmchi ◽  
...  

Abstract Magnetic assembly of micro/nano materials are of great interest due to their unique properties. These nano-scale materials can be ensemble with other matrixes to prepare for new functional micro/nano composites with enhanced specific properties such as, thermal conductivity. In this study, we demonstrated the distribution and magnetic alignment of nickel (Ni) nanoparticle/nanowires inside of a non-magnetic matrix, (e.g., water or a molten wax), experimentally and computationally. A two-dimensional Monte Carlo simulation model is employed to investigate the aggregate structures of Ni nanoparticle/nanowires subjected to a one-directional static magnetic field. It is anticipated that the applied magnetic strength will influence the attractive forces between nanoparticle/nanowires that will produce chain-like cluster structures parallel to magnetic direction where the aligned chains will be separated by a range of distances that are also function of magnetic field strength.


Author(s):  
Genta Nakauchi ◽  
Shota Akasaki ◽  
Hideo Miura

Abstract The variation of their crystallinity, in other words, the order of atom arrangement of grain boundaries in electroplated gold thin films was investigated by changing their manufacturing conditions. Then, the effect of the crystallinity on both their mechanical and electrical properties was measured by using nano-indentation test and electromigration test. The crystallinity of the gold thin films was varied by changing the under-layer material used for electroplating. Also, the micro texture of gold thin films was evaluated by EBSD (Electron Back-Scatter Diffraction) and XRD (X-Ray Diffraction). It was clarified that the crystallinity of the electroplated gold thin films changed drastically depending on the crystallinity of the under-layer materials and electroplating conditions such as current density and temperature. This variation of the crystallinity should have caused wide variation of mechanical properties of the films. In addition, their mechanical properties such as Young’s modulus and hardness showed wide variation by about 3 times comparing with those of bulk gold. Similarly, the EM resistance of the electroplated gold bumps varied drastically depending on the ratio of porous grain boundaries and their crystallinity. Both the ratio and crystallinity also varied depending on the crystallinity of the under layer and electroplating conditions. The effective lifetime of the gold bumps was successfully predicted by considering both the crystallinity and residual stress of fine gold bumps. The lifetime varied more than 10 times as a strong function of the crystallinity of grain boundaries in the fine bumps. Therefore, it is very important to control the crystallinity of the under-layer for electroplating in order to control the distribution of the mechanical properties and reliability of the electroplated gold thin films.


Author(s):  
M. Shafiqur Rahman ◽  
Uttam K. Chakravarty

Abstract This paper presents a radio frequency (RF) energy harvesting (RFEH) system with a multiband antenna configuration that can simultaneously harvest energy from the sub-6 GHz and 5G millimeter-wave (mm-Wave) frequency bands. The performance of the RFEH system is studied from −25 dBm to 5 dBm input power levels underlying the maximization of the overall efficiency and possible optimization strategies. The maximum achievable power conversion efficiency (PCE) is formulated as a mathematical programming problem and solved by optimizing the design factors including antenna geometry, operational frequencies, rectifier topologies, and rectifier parameters. An array of broadband high gain patch antennas with reconfigurable rectifiers, an impedance matching network, and a voltage-multiplier circuit are employed in the system to maximize the PCE. The voltage standing wave ratio (VSWR) and reflection coefficient (S11) of the antenna are estimated and optimized by numerical method. Simulations are conducted to evaluate the performances of the rectenna and the voltage-multiplier circuit. Results for radiation pattern, wave absorption, input impedance, voltage, and power across the load resistance as a function of frequency are obtained for the optimized configuration. The overall efficiency of the optimized RFEH system is measured at various power inputs and load resistances.


Author(s):  
Ken Suzuki ◽  
Yiqing Fan ◽  
Yifan Luo

Abstract Electroplated copper thin films often contain porous grain boundaries and the volume ratio of porous grain boundaries in the copper thin films is much larger than that in bulk copper. Thus, the lifetime of the interconnection components fabricated by electroplating is strongly dominated by the strength of grain boundaries because final fracture caused by the acceleration of atomic diffusion during electromigration (EM) occurs at grain boundaries in polycrystalline interconnections. It is important, therefore, to quantitatively evaluate the grain boundary strength of electroplated copper films for estimating the lifetime of the interconnection in order to assure the product reliability. In this study, relationship between the strength and crystallinity of electroplated copper thin films was investigated experimentally and theoretically. In order to investigate the relationship between the strength and grain boundary quality, molecular dynamics (MD) simulations were applied to analyze the deformation behavior of a bicrystal sample and its strength. The variation of the strength and deformation property were attributed to the higher defect density around grain boundaries.


Author(s):  
Jian Chu ◽  
Ioana Voiculescu ◽  
Ziqian Dong ◽  
Fang Li

Abstract This paper presents an innovative system to monitor the physical soil conditions needed for modern agriculture. The current technique to measure soil properties relies on taking samples from place to place and takes them for laboratory testing. To build up and monitor a data-based system for a large area, such a method is costly and time-consuming. This paper reported our recent work on the development of a passive impedance-loaded surface acoustic wave (SAW) sensor for a low-cost soil condition monitoring system. The SAW sensor will eventually be connected to an antenna and a impedance-based sensor for autonomous soil nutrient sensing. In this research, first, the coupling-of-modes (COM) analysis was performed to simulate the SAW device. The sensors were fabricated with E-beam lithography techniques and tested with different external load resistances. We investigated how the sensor signal changed with the external resistance loading. The experimental results were verified by comparing them with simulation results.


Author(s):  
Mohammad Rizwen Ur Rahman ◽  
Tae Joon Kwak ◽  
Jörg C. Woehl ◽  
Woo-Jin Chang

Abstract In dielectrophoresis, a neutral particle experiences a partial charge separation, i.e. induced net dipole moment, when exposed to a non-uniform electric field, and this leads translational movement of the particle. This induced attractive or repulsive motion of the particle suspended in a fluid is known as dielectrophoresis (DEP). In this paper, we have characterized the strength of DEP traps depending on geometry. Three different micro-trap geometries, i.e. triangle, square and circle, were tested to characterize the effect of trap shape on trap stiffness experimentally and numerically using single particle immobilized in the trap. The maximum DEP force generated in triangular μ-trap was found largest among tested geometries. The maximum DEP force of square and circular trap was found around 68.4% and 79.1% of triangular μ-trap, respectively. The trajectory analysis using trapped single particle revealed that the stiffness of circular μ-trap is 1.23 and 1.34 times stronger than the triangular and square μ-trap, respectively. These results will provide useful information in DEP trap geometry designing to enhance trapping efficiency.


Author(s):  
Mehdi Rahmati ◽  
Xiaolin Chen

Abstract Circulating Tumor Cells (CTCs), which migrate from original sites in a body to distant organs through blood, are a key factor in cancer detection. Emerging Label-free techniques owing to their inherent advantage to preserve characteristics of sorted cells and low consumption of samples can be promising to the prediction of cancer progression and metastasis research. Deterministic Lateral Displacement (DLD) is one of the label-free separation techniques employing a specific arrangement of micro-posts for continuous separation of suspended cells in a buffer based on the size of cells. Separation based solely on size is challenging since the size distributions of CTCs might overlap with those of normal blood cells. To address this problem, DLD can be combined with dielectrophoresis (DEP) technique which is the phenomenon of particle movement in a non-uniform electric field owing to the polarization effect. Although, DLD devices employ the laminar flow in low Reynolds number (Re) fluid flow due to predictability of such flow regimes, they should be improved to work in higher Re flow regime so as to attain high throughput devices. In this paper, a particle tracing simulation is developed to study the effects of different post shapes, shift fraction of micropost arrays, and dielectrophoresis forces on separation of CTCs from peripheral blood cells. Our numerical model and results provide a groundwork for design and fabrication of high-throughput DLD-DEP devices for improvement of CTC separation.


Author(s):  
Qinqiang Zhang ◽  
Xiangyu Qiao ◽  
Masasuke Kobayashi ◽  
Ken Suzuki

Abstract Graphene shows unique super-conductive properties and graphene nanoribbons (GNRs) with band gaps are the candidates for a sensing component of highly sensitive strain sensors. Usually, there is a large energy barrier between electrodes and semiconductors which is not suitable for electron transfer. Therefore, ohmic contact between them is indispensable for fabricating electronic applications. In order to achieve the ohmic contact between external electrodes and detective elements in the devices, the dumbbell-shaped structure of GNRs was proposed for the basic structure of the GNR-based strain sensors, dubbed as dumbbell-shape GNR (DS-GNR). It consists of a long narrow GNR at the center of the structure as the sensing element coalesced with two wider GNRs at both ends of the narrow GNR as the contact components to external electrodes. Both narrow and wide segments of DS-GNR consist of only carbon atoms. The effect of the interaction in the vicinity of the junction area between wide metallic and narrow semiconductive GNRs, however, has not been clearly demonstrated. In this study, first-principles calculations were implemented to the analysis of the electronic band structure of the DS-GNR. It was found that the localized distribution of the energy states of electrons exists in the wide segment of DS-GNR. The changes varied from wide to narrow segment is smooth and observable as strong functions of the length and the width of DS-GNRs. The current-voltage characteristics showed curved semiconductive-like electronic properties with a smooth-electron flow in DS-GNR. Therefore, the DS-GNR has great potential for the use of next-generation highly sensitive and deformable strain sensors.


Author(s):  
Eric A. Gioe ◽  
Xiaolin Chen ◽  
Jong-Hoon Kim

Abstract Microfluidics has shown great promise for the sorting or separation of biological cells such as circulating tumor cells since the first studies came out a few decades ago. With recent advances in high-throughput microfluidics, analysis of massive amounts of data needs to be completed in an iterative, timely manner. However, the majority of analysis is either performed manually or through the use of superimposing multiple images to define the flow of the particles, taking a significant amount of time to complete. The objective of the work is to increase the efficiency and repeatability of particle detection in a high-throughput deterministic lateral displacement (DLD) device. The program proposed is in the early stages of development, but shows promise. The average time it takes to analyze over a gigabyte of video is 24.21 seconds. The average percent error of the total particle detection was 21.42%. The assumptions made for the initial version of the program affect the accuracy of the particle in wall detection, so new techniques that do not follow the assumptions will need to be investigated. More work will be completed to implement machine learning or deep learning to assist in the development of DLD devices.


Author(s):  
Matthew Trapuzzano ◽  
Nathan Crane ◽  
Rasim Guldiken ◽  
Andrés Tejada-Martínez

Abstract Adhesives, medical devices, and many cleaning products depend on the wetting of liquids on solid surfaces. The liquid/solid interaction depends on chemistry, surface topology, and external energy input. For instance, surfactants are commonly used in cleaning solutions to improve their effectiveness, and electrical fields are frequently used to control the contact angle of liquid droplets. Low frequency vibration has been used to spread, move, and manipulate droplets using the mode shape oscillations of the droplet to displace the contact line. Ultrasonic vibration (above 20 kHz) can also cause a liquid droplet to wet or spread out on a solid surface under the right circumstances. We have previously demonstrated that ultrasonic vibration can be used to control the wetting/spreading of liquid droplets on smooth hydrophobic surfaces and that the response is relatively insensitive to excitation frequency or fluid properties [1]. This paper reports on the use of ultrasonic vibration to initiate spreading on surfaces with etched pillars. Ultrasonic vibration successfully initiated a transition from Cassie to Wenzel states in all geometries with no apparent need to tune excitation frequencies to the geometry. However, the magnitude of the acceleration required to initiate the transition decreased with increased pillar spacing. For small pillar spacing, some smooth spreading in the Cassie wetting mode was observed before transition.


Sign in / Sign up

Export Citation Format

Share Document