scholarly journals Relativistic quantum dynamics of a neutral particle in external electric fields: An approach on effects of spin

2015 ◽  
Vol 362 ◽  
pp. 196-207 ◽  
Author(s):  
F.S. Azevedo ◽  
Edilberto O. Silva ◽  
Luis B. Castro ◽  
Cleverson Filgueiras ◽  
D. Cogollo
2012 ◽  
Vol 18 ◽  
pp. 101-104
Author(s):  
L. R. RIBEIRO ◽  
K. BAKKE ◽  
C. FURTADO

In this short communication, we study the Landau levels in the non-relativistic quantum dynamics of a neutral particle which possesses a permanent magnetic dipole moment interacting with an external electric field in curved spacetime background with the presence or absence of a torsion field. We show that the presence of the topological defect breaks the infinite degeneracy of the Landau levels.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Fabiano M. Andrade ◽  
Cleverson Filgueiras ◽  
Edilberto O. Silva

In this paper the relativistic quantum dynamics of a spin-1/2 neutral particle with a magnetic moment μ in the cosmic string spacetime is reexamined by applying the von Neumann theory of self-adjoint extensions. Contrary to previous studies where the interaction between the spin and the line of charge is neglected, here we consider its effects. This interaction gives rise to a point interaction: ∇·E=(2λ/α)δ(r)/r. Due to the presence of the Dirac delta function, by applying an appropriated boundary condition provided by the theory of self-adjoint extensions, irregular solutions for the Hamiltonian are allowed. We address the scattering problem obtaining the phase shift, S-matrix, and the scattering amplitude. The scattering amplitude obtained shows a dependency with energy which stems from the fact that the helicity is not conserved in this system. Examining the poles of the S-matrix we obtain an expression for the bound states. The presence of bound states for this system has not been discussed before in the literature.


Author(s):  
Johan Sjöblom ◽  
Sameer Mhatre ◽  
Sébastien Simon ◽  
Roar Skartlien ◽  
Geir Sørland

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 205
Author(s):  
Dietrich Haase ◽  
Gunter Hermann ◽  
Jörn Manz ◽  
Vincent Pohl ◽  
Jean Christophe Tremblay

Quantum simulations of the electron dynamics of oriented benzene and Mg-porphyrin driven by short (<10 fs) laser pulses yield electron symmetry breaking during attosecond charge migration. Nuclear motions are negligible on this time domain, i.e., the point group symmetries G = D6h and D4h of the nuclear scaffolds are conserved. At the same time, the symmetries of the one-electron densities are broken, however, to specific subgroups of G for the excited superposition states. These subgroups depend on the polarization and on the electric fields of the laser pulses. They can be determined either by inspection of the symmetry elements of the one-electron density which represents charge migration after the laser pulse, or by a new and more efficient group-theoretical approach. The results agree perfectly with each other. They suggest laser control of symmetry breaking. The choice of the target subgroup is restricted, however, by a new theorem, i.e., it must contain the symmetry group of the time-dependent electronic Hamiltonian of the oriented molecule interacting with the laser pulse(s). This theorem can also be applied to confirm or to falsify complementary suggestions of electron symmetry breaking by laser pulses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zainab Gholami ◽  
Farhad Khoeini

AbstractThe main contribution of this paper is to study the spin caloritronic effects in defected graphene/silicene nanoribbon (GSNR) junctions. Each step-like GSNR is subjected to the ferromagnetic exchange and local external electric fields, and their responses are determined using the nonequilibrium Green’s function (NEGF) approach. To further study the thermoelectric (TE) properties of the GSNRs, three defect arrangements of divacancies (DVs) are also considered for a larger system, and their responses are re-evaluated. The results demonstrate that the defected GSNRs with the DVs can provide an almost perfect thermal spin filtering effect (SFE), and spin switching. A negative differential thermoelectric resistance (NDTR) effect and high spin polarization efficiency (SPE) larger than 99.99% are obtained. The system with the DV defects can show a large spin-dependent Seebeck coefficient, equal to Ss ⁓ 1.2 mV/K, which is relatively large and acceptable. Appropriate thermal and electronic properties of the GSNRs can also be obtained by tuning up the DV orientation in the device region. Accordingly, the step-like GSNRs can be employed to produce high efficiency spin caloritronic devices with various features in practical applications.


Author(s):  
Li Zhang ◽  
Ya‐Ling Ye ◽  
Xiao‐Ling Zhang ◽  
Xiang‐Hui Li ◽  
Qiao‐Hong Chen ◽  
...  

Soft Matter ◽  
2014 ◽  
Vol 10 (45) ◽  
pp. 9110-9119 ◽  
Author(s):  
Hanumantha Rao Vutukuri ◽  
Frank Smallenburg ◽  
Stéphane Badaire ◽  
Arnout Imhof ◽  
Marjolein Dijkstra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document