Theoretical Prediction of the Structural, Elastic, Electronic and Thermodynamic Properties of Binary CoP3 and Ternary FeCoP3 Skutterudites Materials

SPIN ◽  
2020 ◽  
Vol 10 (02) ◽  
pp. 2050011
Author(s):  
Riadh Zouablia ◽  
Ghlamallah Benabdellah ◽  
Mohamed Mokhtari ◽  
Said Hiadsi

The structural, elastic, electronic and thermodynamic properties of skutterudite binary compound CoP3 and the ternary alloy FeCoP3 were investigated by using the full-potential linearized augmented plane-wave plus local orbitals method within the approximation GGA-PBEsol functional. The computed lattice constants, bulk moduli and the pressure derivative of the bulk moduli at the equilibrium are in good agreement with the published experimental data. The brittleness and ductility of these materials were studied by the analysis of the elastic constants and other mechanical parameters, where we have found that both CoP3 and FeCoP3 are ductile materials. The electronic band structure calculation, using the modified Becke-Johnson potential (TB-mBJ), shows that the skutterudite binary compound CoP3 at equilibrium, present a narrow indirect bandgap of 0.524[Formula: see text]eV where the ternary alloy FeCoP3 is a metal behavior. Finally, we investigated the impact of pressure [Formula: see text] and temperature [Formula: see text] on the lattice parameters, heat capacities [Formula: see text], Debye temperatures [Formula: see text] and the entropies [Formula: see text] using the quasi-harmonic Debye model.

Author(s):  
Khodja Djamila ◽  
Djaafri Tayeb ◽  
Djaafri Abdelkader ◽  
Bendjedid Aicha ◽  
Hamada Khelifa ◽  
...  

The investigations of the strain effects on magnetism, elasticity, electronic, optical and thermodynamic properties of PdVTe half-Heusler alloy are carried out using the most accurate methods to electronic band structure, i.e. the full-potential linearized augmented plane wave plus a local orbital (FP-LAPW + lo) approach. The analysis of the band structures and the density of states reveals the Half-metallic behavior with a small indirect band gap Eg of 0.51 eV around the Fermi level for the minority spin channels. The study of magnetic properties led to the predicted value of total magnetic moment µtot = 3µB, which nicely follows the Slater–Pauling rule µtot = Zt -18. Several optical properties are calculated for the first time and the predicted values are in line with the Penn model. It is shown from the imaginary part of the complex dielectric function that the investigated alloy is optically metallic. The variations of thermodynamic parameters calculated using the quasi-harmonic Debye model, accord well with the results predicted by the Debye theory. Moreover, the dynamical stability of the investigated alloy is computed by means of the phonon dispersion curves, the density of states, and the formation energies. Finally, the analysis of the strain effects reveals that PdVTe alloy preserves its ferromagnetic half metallic behavior, it remains mechanically stable, the ionic nature dominates the atomic bonding, and the thermodynamic and the optical properties keep the same features in a large interval of pressure.


Author(s):  
Jyoti Sagar ◽  
Reetu Singh ◽  
Vijay Kumar ◽  
Sanjay Kumar ◽  
Manish P. Singh ◽  
...  

Abstract Gold-rich rare earth intermetallic compounds (viz. Ce2Au2Cd and CeAu4Cd2) show unusual magnetic and physical properties, and they have extensive applications in electronic and mechanical industries due to their good electronic and thermal behavior with high mechanical strength. In the present research article, to take full advantage of technological importance of these materials, we have investigated the structural, electronic and thermodynamic properties of Ce2Au2Cd and CeAu4Cd2 ternary intermetallic compounds using density functional theory (DFT). The electronic band structure and density of state calculations show that Ce-f orbital electrons provide metallic character to both the compounds with strong hybridization of Au-p and Cd-p orbitals at the Fermi level. The effect of temperature has been studied on the various thermodynamic parameters using the quasi-harmonic Debye model. Thermodynamic properties show that CeAu4Cd2 compound has larger mechanical resistance (or high mechanical strength or hardness) and smaller randomness compared to Ce2Au2Cd with respect to temperature.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Tomohiro Imai ◽  
Tsutomu Iida ◽  
Yuki Miyata ◽  
Takashi Itoh ◽  
Hiroki Funashima ◽  
...  

AbstractSi1-xGex alloys show the high power generating efficiency as a thermoelectric- conversion material. We evaluate the thermoelectric power of the n-type SiGe system on the basis of the first principles calculations. The electronic-band-structure calculation is performed using all-electron full-potential linearized augmented-plane-wave (FLAPW) method within the local density approximation (LDA). The Seebeck coefficient is analyzed by the Bloch-Boltzmann equation. We find that the ordered rhombohedral SiGe has high Seebeck coefficient in comparison with zincblende SiGe. The efficiency of the thermoelectric power in Si1-xGex is gained by the local atomic configuration rather than the Ge concentration.


2016 ◽  
Vol 94 (9) ◽  
pp. 865-876 ◽  
Author(s):  
Dj Guendouz ◽  
Z. Charifi ◽  
H. Baaziz ◽  
T. Ghellab ◽  
N. Arikan ◽  
...  

Electronic band structure, optical and thermodynamic properties of ternary hydrides MBeH3 (M = Li, Na, and K) were studied using ab initio density functional theory (DFT). The effect of the adopted approximation to the exchange-correlation functional of the DFT is explicitly investigated by considering four different expressions of two different classes (local-density approximation and generalized-gradient approximation). The calculated magnitude of B classifies MBeH3 (M = Li, Na, and K) as easily compressible materials. The bonding interaction in these compounds is quite complicated. The interaction between M and BeH6 is ionic and that between Be and H comprises both ionic and covalent characters. The electronic structure of the complex hydride was investigated by calculating the partial and total densities of states, and electron charge density distribution. Large gaps in the density of states appear at the Fermi energy of LiBeH3, NaBeH3, and KBeH3 indicating that these classes of hydrides are insulators. Optical properties, including the dielectric function, reflectivity, and absorption coefficient, each as a function of photon energy, are calculated and show an optical anisotropy for LiBeH3 and KBeH3. Through the quasi-harmonic Debye model, in which the phononic effects are considered, temperature dependence of volume V(T), bulk modulus B(T), and thermal expansion coefficient α(T), constant-volume and constant-pressure specific heat (Cv and Cp) and Debye temperature ΘD, the entropy S, and the Grüneisen parameter γ were calculated at wide pressure and temperature ranges. The principal aspect of the obtained results is the close similarity of MBeH3 (M = Li, Na, and K) compounds.


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 429 ◽  
Author(s):  
Tie Yang ◽  
Jieting Cao ◽  
Xiaotian Wang

Structural, electronic, magnetic and mechanic properties of the inverse Heusler alloy Ti2NiIn under different pressure are systematically studied with density functional theory (DFT). The equilibrium lattice constant and electronic band structure at null pressure are obtained to be consistent with previous work. Under currently applied static pressure from 0 GPa to 50 GPa, it is found that the half-metallicity of the material is maintained and the total magnetic moment (Mt) is kept at 3 µB, which obeys the Slater–Pauling rule, Mt = Zt − 18, where Zt is the total number of valence electrons. Besides, the effect of the tetragonal distortion was studied and it is found that the magnetic property of Ti2NiIn is almost unchanged. Several mechanical parameters are calculated including three elastic constants, bulk modulus B, Young’s modulus E, and shear modulus S and the mechanical stability is examined accordingly. Furthermore, the thermodynamic properties, such as the heat capacity CV, the thermal expansion coefficient α, the Grüneisen constant γ and the Debye temperature ΘD, are computed by using the quasi-harmonic Debye model within the same pressure range at a series of temperature from 0 to 1500 K. This theoretical study provides detailed information about the inverse Heusler compound Ti2NiIn from different aspects and can further lead some insight on the application of this material.


2017 ◽  
Vol 72 (9) ◽  
pp. 843-853 ◽  
Author(s):  
Cansu Çoban

AbstractThe pressure dependent behaviour of the structural, electronic, mechanical, vibrational, and thermodynamic properties of Pd2TiX (X=Ga, In) Heusler alloys was investigated by ab initio calculations. The lattice constant, the bulk modulus and its first pressure derivative, the electronic band structure and the density of states (DOS), mechanical properties such as elastic constants, anisotropy factor, Young’s modulus, etc., the phonon dispersion curves and phonon DOS, entropy, heat capacity, and free energy were obtained under pressure. It was determined that the calculated lattice parameters are in good agreement with the literature, the elastic constants obey the stability criterion, and the phonon dispersion curves have no negative frequency which shows that the compounds are stable. The band structures at 0, 50, and 70 GPa showed valence instability at the L point which explains the superconductivity in Pd2TiX (X=Ga, In).


Author(s):  
Saadi Berri

The electronic structure and some of its derived properties of Li2CaGeO4 compound have been investigated. The calculations have been performed using the full-potential linearized augmented plane wave plus local orbitals method and ultra-soft pseudo-potentials . The optimized lattice parameters are found to be ingood accord with experiment. Features such as bulk modulus and its pressure derivative, electronic band structure and density of states are reported. The elastic anisotropy of the crystal is discussed and visualized. Moreover, the optical properties reveal that Li2CaGeO4 compound are suitable candidates for optoelectronic devices in the visible and ultraviolet (UV) regions.


2013 ◽  
Vol 27 (18) ◽  
pp. 1350082 ◽  
Author(s):  
F. SEMARI ◽  
T. OUAHRANI ◽  
H. KHACHAI ◽  
R. KHENATA ◽  
M. RABAH ◽  
...  

Bonding nature as well as structural, optoelectronic and thermal properties of the cubic X Mg 2 O 4(X = Si , Ge ) spinel compounds have been calculated using a full-potential augmented plane-wave plus local orbitals (FP-APW+lo) method within the density functional theory. The exchange-correlation potential was treated with the PBE-GGA approximation to calculate the total energy. Moreover, the modified Becke–Johnson potential (TB-mBJ) was also applied to improve the electronic band structure calculations. The computed ground-state parameters (a, B, B′ and u) are in excellent agreements with the available theoretical data. Calculations of the electronic band structure and bonding properties show that these compounds have a direct energy band gap (Γ-Γ) with a dominated ionic character and the TB-mBJ approximation yields larger fundamental band gaps compared to those obtained using the PBE-GGA. Optical properties such as the complex dielectric function ε(ω), reflectivity R(ω) and energy loss function L(ω), for incident photon energy up to 40 eV, have been predicted. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the effects of pressure P and temperature T on the thermal expansion coefficient, Debye temperature and heat capacity for the considered compounds are investigated for the first time.


2010 ◽  
Vol 74 ◽  
pp. 15-21
Author(s):  
Hiroki Funashima ◽  
Noriaki Hamada

Recently it was reported that AgxTeyTz shows extremely low thermal conductivity, and high power generating efficiency as a thermoelectric conversion material[1]. We evaluate the seebeck coefficient on basis of the first principles calculations. The electronic band structure calculation is performed using all-electron full-potential linearized augmented plane-wave method(FLAPW) within the local density approximation(LDA). The seebeck coefficent is analyzed by Bloch-Boltzmann equation. In this paper, we find that AgTeTl and AgTe2Tl3 are better thermoelectric material among AgxTeyTlz.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 7
Author(s):  
B. Bachir Bouiadjra ◽  
N. Mehnane ◽  
N. Oukli

Based on the full potential linear muffin-tin orbitals (FPLMTO) calculation within density functional theory, we systematically investigate the electronic and optical properties of (100) and (110)-oriented (InN)/(GaN)n zinc-blende superlattice with one InN monolayer and with different numbers of GaN monolayers. Specifically, the electronic band structure calculations and their related features, like the absorption coefficient and refractive index of these systems are computed over a wide photon energy scale up to 20 eV. The effect of periodicity layer numbers n on the band gaps and the optical activity of (InN)/(GaN)n SLs in the both  growth axis (001) and (110) are examined and compared. Because of prospective optical aspects of (InN)/(GaN)n such as light-emitting applications, this theoretical study can help the experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document