Computational modeling and relevance of numerical convergence for the investigation of thermal expansion behavior for aluminium hybrid composites

Author(s):  
S. A. Mohan Krishna ◽  
T. N. Shridhar ◽  
L. Krishnamurthy

The thermal characterization and analysis of composite materials has been increasingly important in a wide range of applications. The coefficient of thermal expansion (CTE) is one of the most important properties of metal matrix composites (MMCs). Since nearly all MMCs are used in various temperature ranges, measurement of CTE as a function of temperature is necessary in order to know the behavior of the material. In this research paper, the evaluation of CTE or thermal expansivity has been accomplished for Al 6061, silicon carbide and graphite hybrid MMCs from room temperature to [Formula: see text]C. Aluminium-based composites reinforced with silicon carbide and graphite particles have been prepared by stir casting technique. The thermal expansivity behavior of hybrid composites with different percentage compositions of reinforcements has been investigated. The results have indicated that the thermal expansivity of different compositions of hybrid MMCs decrease by the addition of graphite with silicon carbide and Al 6061. Empirical models have been validated for the evaluation of thermal expansivity of composites. Numerical convergence test has been accomplished to investigate the thermal expansion behavior of composites.

Author(s):  
S. A. Mohan Krishna ◽  
T. N. Shridhar ◽  
L. Krishnamurthy

Metal matrix composites (MMCs) have been regarded as one of the most principal classifications in composite materials. The thermal characterization of hybrid MMCs has been increasingly important in a wide range of applications. The coefficient of thermal expansion is one of the most important properties of MMCs. Since nearly all MMCs are used in various temperature ranges, measurement of coefficient of thermal expansion (CTE) as a function of temperature is necessary in order to know the behavior of the material. In this research paper, the evaluation of thermal expansivity has been accomplished for Al 6061, silicon carbide ( SiC ) and Graphite ( Gr ) hybrid MMCs from room temperature to 300°C. Aluminum ( Al )-based composites reinforced with SiC and Gr particles have been prepared by stir casting technique. The thermal expansivity behavior of hybrid composites with different percentage compositions of reinforcements has been investigated. The results have indicated that the thermal expansivity of the different compositions of hybrid MMCs decreases by the addition of Gr with SiC and Al 6061. Few empirical models have been validated for the evaluation of thermal expansivity of composites. Using the experimental values namely modulus of elasticity, Poisson's ratio and thermal expansivity, computational investigation has been carried out to evaluate the thermal parameters namely thermal displacement, thermal strain and thermal stress.


2014 ◽  
Vol 136 (1) ◽  
Author(s):  
Changsoo Jang ◽  
Bongtae Han

Hygroscopic and thermal expansion behavior of advanced polymers is investigated when subjected to combined high temperature and moisture conditions. An enhanced experimental–numerical hybrid procedure is proposed to overcome the limitations of the existing methods when used at temperatures above the water boiling temperature. The proposed procedure is implemented to measure the hygrothermal strains of three epoxy molding compounds and a no-filler underfill over a wide range of temperatures including temperatures beyond the water boiling temperature. The effects of moisture content on the glass transition temperature (Tg) and coefficient of thermal expansion (CTE) are evaluated from the measurement data. A formulation to predict the Tg change as a function of moisture content is also presented.


2011 ◽  
Vol 287-290 ◽  
pp. 658-661 ◽  
Author(s):  
Xian Liang Zhou ◽  
Duo Sheng Li ◽  
Ai Hua Zou ◽  
Xiao Zhen Hua ◽  
Zhi Guo Ye ◽  
...  

SiCp/Al composites were fabricated by ceramic mold freedom infiltration and pressureless infiltration, respectively. The microstructure and phases are analyzed by metallurgical microscope and coefficient of thermal expansion of SiCp/Al composites were tested by thermal dilatometer. The results show that SiCp/Al composites are compact and uniform. SiC particles were dispersed uniformly in Al matrix, and SiCp segregation was not found in composites. Under a certain SiCp size range, space between SiCp decreases with decreasing of SiCp size, and CTE of SiCp/Al composites also decreases with decreasing of particles size. Compared with CTE of composite with pure aluminum as matrix, CTE of composite with ZL101 as matrix is less. Under the annealing process, CTE of SiCp/Al composites with ZL101 as matrix is less than that with the solution and aging, which indicated that its dimensional stability of resisting to temperature fluctuation is better, and thermal expansion behavior and characteristic of SiCp/Al composites are also better.


2012 ◽  
Vol 23 (1) ◽  
pp. 03-07 ◽  
Author(s):  
Murilo Baena Lopes ◽  
Zhuoqun Yan ◽  
Simonides Consani ◽  
Alcides Gonini Júnior ◽  
Anderson Aleixo ◽  
...  

The mismatch of thermal expansion and contraction between restorative materials and tooth may cause stresses at their interface, which may lead to microleakage. The present work compared the coefficient of thermal expansion (CTE) with the thermomechanical behavior of human and bovine teeth and determined if the CTE is a suitable parameter to describe tooth behavior. Fifteen human third molar and 15 bovine incisor tooth slices (6×5×2 mm) were allocated to 3 groups according to the test environment: G1 - room condition, G2 - 100% humidity, G3 - desiccated and tested in dry condition. Each specimen was weighed, heated from 20 to 70ºC at 10ºC min−1 and reweighed. The CTE was measured between 20 and 50ºC. Fresh dentin (human -0.49% ± 0.27, bovine -0.22% ± 0.16) contracted on heating under dry condition. Under wet conditions, only human teeth (-0.05% ± 0.04) showed contraction (bovine 0.00% ± 0.03) accompanied by a significantly lower (p<0.05) weight loss than in dry specimens (human 0.35% ± 0.15, bovine 0.45% ± 0.20). The desiccated dentin expanded on heating without obvious weight changes (0.00% ± 0.00). The CTE found was, respectively, in dry, wet and dissected conditions in ºC-1: human (-66.03×10-6, -6.82×10-6, 5.52×10-6) and bovine (-33.71×10-6, 5.47×10-6, 4.31×10-6). According to its wet condition, the dentin showed different CTEs. The thermal expansion behavior of human and bovine dentin was similar. A simple evaluation of the thermal expansion behavior of tooth structure by its CTE value may not be appropriate as a meaningful consideration of the effects on the tooth-material interface.


Author(s):  
S A Mohan Krishna ◽  
T N Shridhar ◽  
L Krishnamurthy ◽  
K B Vinay ◽  
G V Naveen Prakash

Aluminium matrix composites belong to the family of materials whose mechanical, tribological, thermal and electrical properties can be customized effectively. Most of the commercial work on MMCs has been highlighted on Aluminium as the matrix material. The combination of light weight, environmental resistance and beneficial mechanical properties has made Aluminium alloys exceedingly popular; these properties also make Aluminium best suited for use as a matrix metal. The thermophysical properties of these composites can be tailor made and have excellent specific mechanical properties. These composites can be fabricated with ease. Aluminium matrix composites reinforced with the particles of Silicon Carbide possess high yield strength, low coefficient of thermal expansion or thermal expansivity, high modulus of elasticity and excellent wear resistance by maintaining volume proportion up to 20%. Aluminium hybrid composites can be customized to provide moderate Coefficient of Thermal Expansion (CTE) and high thermal conductivity that are favorable for the applications pertaining to thermal management equipment. However, it is necessary to evaluate different percentage combinations of reinforcements with matrix Aluminium to check for thermal stability and to measure thermal conductivity and coefficient of thermal expansion. It is expected that, Aluminium-Silicon Carbide-Graphite hybrid composites can be used as load bearing material for the above applications. In this paper, a review about the said hybrid composites to investigate thermal properties for engineering applications have been discussed based on its technological relevance, applications and research prospect.


2018 ◽  
Vol 30 (1) ◽  
pp. 32-44 ◽  
Author(s):  
Mohammad Javad Mahmoodi ◽  
Mohammad Kazem Hassanzadeh-Aghdam ◽  
Reza Ansari

In this study, a unit cell–based micromechanical approach is proposed to analyze the coefficient of thermal expansion of shape memory polymer nanocomposites containing SiO2 nanoparticles. The interphase region created due to the interaction between the SiO2 nanoparticles and shape memory polymer is modeled as the third phase in the nanocomposite representative volume element. The influences of the temperature, volume fraction, and diameter of the SiO2 nanoparticles on the thermal expansion behavior of shape memory polymer nanocomposite are explored. It is observed that the coefficient of thermal expansion of shape memory polymer nanocomposite decreases with the increase in the volume fraction up to 12%. Also, the results reveal that with the increase in temperature, the shape memory polymer nanocomposite coefficient of thermal expansion linearly increases. The role of interphase region on the thermal expansion response of the shape memory polymer nanocomposite is found to be very important. In the presence of interphase, the reduction in nanoparticle diameter leads to lower coefficient of thermal expansion for shape memory polymer nanocomposite, while the variation of nanoparticles diameter does not affect the coefficient of thermal expansion in the absence of interphase. Based on the simulation results, the shape memory polymer nanocomposite coefficient of thermal expansion decreases as the interphase thickness increases. In addition, the contribution of interphase coefficient of thermal expansion to the shape memory polymer nanocomposite coefficient of thermal expansion is more significant than that of interphase elastic modulus.


Sign in / Sign up

Export Citation Format

Share Document