scholarly journals Tracking of Ground Mobile Targets by Quadrotor Unmanned Aerial Vehicles

2014 ◽  
Vol 02 (02) ◽  
pp. 157-173 ◽  
Author(s):  
Ruoyu Tan ◽  
Manish Kumar

This paper focuses on the development of control and guidance laws for quadrotor Unmanned Aerial Vehicles (UAVs) to track maneuvering ground targets. Proportional Derivative (PD) control law is a popular choice to be used as a tracking controller for quadrotors, but it is often inefficient due to practical acceleration constraints and a number of parameters that need to be tuned. The paper proposes a Proportional Navigation (PN)-based switching strategy to address the problem of mobile target tracking. The experiments and numerical simulations performed using nonmaneuvering and maneuvering targets show that the proposed PN-based switching strategy not only carries out effective tracking but also results into smaller oscillations and errors when compared to the widely used PD tracking method. The proposed PN-based switching strategy presents an important question with regard to when the switching should happen that would minimize the positional error between the UAV and the target. An optimal switching strategy, which is based on the analytical solutions of the PN and PD methods, is proposed. The numerical simulations not only validate the theoretical results with regard to the optimality of the proposed method for both nonmaneuvering and maneuvering targets but also demonstrate that the proposed method is robust to measurement noise.

Author(s):  
Ruoyu Tan ◽  
Manish Kumar

This paper addresses the problem of controlling a rotary wing Unmanned Aerial Vehicle (UAV) tracking a target moving on ground. The target tracking problem by UAVs has received much attention recently and several techniques have been developed in literature most of which have been applied to fixed wing aircrafts. The use of quadrotor UAVs, the subject of this paper, for target tracking presents several challenges especially for highly maneuvering targets since the development of time-optimal controller (required if target is maneuvering fast) for quadrotor UAVs is extremely difficult due to highly non-linear dynamics. The primary contribution of this paper is the development of a proportional navigation (PN) based method and its implementation on quad-rotor UAVs to track moving ground target. The PN techniques are known to be time-optimal in nature and have been used in literature for developing guidance systems for missiles. There are several types of guidance laws that come within the broad umbrella of the PN method. The paper compares the performance of these guidance laws for their application on quadrotors and chooses the one that performs the best. Furthermore, to apply this method for target tracking instead of the traditional objective of target interception, a switching strategy has also been designed. The method has been compared with respect to the commonly used Proportional Derivative (PD) method for target tracking. The experiments and numerical simulations performed using maneuvering targets show that the proposed tracking method not only carries out effective tracking but also results into smaller oscillations and errors when compared to the widely used PD tracking method.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Revant Adlakha ◽  
Minghui Zheng

Abstract This paper presents a two-step optimization-based design method for iterative learning control and applies it onto the quadrotor unmanned aerial vehicles (UAVs) trajectory tracking problem. Iterative learning control aims to improve the tracking performance through learning from errors over iterations in repetitively operated systems. The tracking errors from previous iterations are injected into a learning filter and a robust filter to generate the learning signal. The design of the two filters usually involves nontrivial tuning work. This paper presents a new two-optimization design method for the iterative learning control, which is easy to obtain and implement. In particular, the learning filter design problem is transferred into a feedback controller design problem for a purposely constructed system, which is solved based on H-infinity optimal control theory thereafter. The robust filter is then obtained by solving an additional optimization to guarantee the learning convergence. Through the proposed design method, the learning performance is optimized and the system's stability is guaranteed. The proposed two-step optimization-based design method and the regarding iterative learning control algorithm are validated by both numerical and experimental studies.


2020 ◽  
Vol 12 ◽  
pp. 175682932097357
Author(s):  
E Javier Ollervides-Vazquez ◽  
Erik G Rojo-Rodriguez ◽  
Octavio Garcia-Salazar ◽  
Luis Amezquita-Brooks ◽  
Pedro Castillo ◽  
...  

This paper presents an algorithm based on fuzzy theory for the formation flight of the multi-quadrotors. For this purpose, the mathematical model of N-quadrotor unmanned aerial vehicles is presented using the Newton-Euler formulation. The strategy of the formation flight is based on a structure composed by a sectorial fuzzy controller and the linear systems whose state variables are the position and velocity of the ith quadrotor. The stability analysis is described as a generalized form for N-quadrotor unmanned aerial vehicles and it is based on the Lyapunov theory. This analysis demonstrates that the closed-loop system is globally asymptotically stable so that the quadrotors unmanned aerial vehicles reach the consensus. Numerical simulation demonstrates the robustness of the proposed scheme for the formation flight even in the presence of disturbances. Finally, experimental results show the feasibility of the proposed algorithm for the formation flight of multiple unmanned aerial vehicles.


Sign in / Sign up

Export Citation Format

Share Document