scholarly journals Two Components of the Macroscopic General Field

2017 ◽  
Vol 01 (02) ◽  
pp. 1750002 ◽  
Author(s):  
Sergey G. Fedosin

The general field, containing all the macroscopic fields in it, is divided into the mass component, the source of which is the mass four-current, and the charge component, the source of which is the charge four-current. The mass component includes the gravitational field, acceleration field, pressure field, dissipation field, strong interaction and weak interaction fields, other vector fields. The charge component of the general field represents the electromagnetic field. With the help of the principle of least action we derived the field equations, the equation of the matter’s motion in the general field, the equation for the metric, the energy and momentum of the system of matter and its fields, and calibrated the cosmological constant. The general field components are related to the corresponding vacuum field components so that the vacuum field generates the general field at the macroscopic level.

The well-known theorem that the motion of any conservative dynamical system can be determined from the “Principle of Least Action” or “Hamilton’s Principle” was carried over into General Relativity-Theory in 1915 by Hilbert, who showed that the field-equations of gravitation can be deduced very simply from a minimum-principle. Hilbert generalised his ideas into the assertion that all physical happenings (gravitational electrical, etc.) in the universe are determined by a scalar “world-function” H, being, in fact, such as to annul the variation of the integral ∫∫∫∫H√(−g)dx 0 dx 1 dx 2 dx 3 where ( x 0 , x 1 , x 2 , x 3 ) are the generalised co-ordinates which specify place and time, and g is (in the usual notation of the relativity-theory) the determinant of the gravitational potentials g v q , which specify the metric by means of the equation dx 2 = ∑ p, q g vq dx v dx q . In Hilbert’s work, the variation of the above integral was supposed to be due to small changes in the g vq 's and in the electromagnetic potentials, regarded as functions of x 0 , x 1 , x 2 , x 3 .


2021 ◽  
pp. 286-325
Author(s):  
Moataz H. Emam

We present the principle of least action and see how it is used in non-relativistic point particle mechanics, relativistic point particle mechanics, general relativity, derivation of field equations for scalar, vector and tensor fields as well as the energy momentum tensor. Towards the end we present examples of solutions of Einstein-Maxwell fields: The Reissner-Nordstrom metric, Kerr metric, and Kerr- Newman metric.


Author(s):  
Sergey G. Fedosin

Within the framework of the theory of relativistic vector fields, the covariant expressions are presented for the equations of motion of the matter and the field. These expressions can be written either in terms of the field tensors, that is, the fields’ strengths and solenoidal vectors, or in terms the four-potentials, that is, the fields’ scalar and vector potentials. This state of things is due to the fact that the Lagrange function initially implied the complementarity of description in terms of the strengths and the field potentials. It is shown that the equation for the fields, obtained by taking the covariant derivative in the equation for the metric, has a deeper meaning than the ordinary equation of motion of the matter, found with the help of the principle of least action. In particular, the above-mentioned equation for the fields leads to the generalized Poynting theorem, and after integration over the volume it allows us to introduce for consideration the integral vector as a measure of the energy and the fields’ energy fluxes, associated with a system of particles and fields.


Author(s):  
David D. Nolte

Galileo’s parabolic trajectory launched a new approach to physics that was taken up by a new generation of scientists like Isaac Newton, Robert Hooke and Edmund Halley. The English Newtonian tradition was adopted by ambitious French iconoclasts who championed Newton over their own Descartes. Chief among these was Pierre Maupertuis, whose principle of least action was developed by Leonhard Euler and Joseph Lagrange into a rigorous new science of dynamics. Along the way, Maupertuis became embroiled in a famous dispute that entangled the King of Prussia as well as the volatile Voltaire who was mourning the death of his mistress Emilie du Chatelet, the lone female French physicist of the eighteenth century.


Author(s):  
Jerzy Warminski ◽  
Lukasz Kloda ◽  
Jaroslaw Latalski ◽  
Andrzej Mitura ◽  
Marcin Kowalczuk

AbstractNonlinear dynamics of a rotating flexible slender beam with embedded active elements is studied in the paper. Mathematical model of the structure considers possible moderate oscillations thus the motion is governed by the extended Euler–Bernoulli model that incorporates a nonlinear curvature and coupled transversal–longitudinal deformations. The Hamilton’s principle of least action is applied to derive a system of nonlinear coupled partial differential equations (PDEs) of motion. The embedded active elements are used to control or reduce beam oscillations for various dynamical conditions and rotational speed range. The control inputs generated by active elements are represented in boundary conditions as non-homogenous terms. Classical linear proportional (P) control and nonlinear cubic (C) control as well as mixed ($$P-C$$ P - C ) control strategies with time delay are analyzed for vibration reduction. Dynamics of the complete system with time delay is determined analytically solving directly the PDEs by the multiple timescale method. Natural and forced vibrations around the first and the second mode resonances demonstrating hardening and softening phenomena are studied. An impact of time delay linear and nonlinear control methods on vibration reduction for different angular speeds is presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soon Ho Kim ◽  
Jong Won Kim ◽  
Hyun Chae Chung ◽  
MooYoung Choi

AbstractThe principle of least effort has been widely used to explain phenomena related to human behavior ranging from topics in language to those in social systems. It has precedence in the principle of least action from the Lagrangian formulation of classical mechanics. In this study, we present a model for interceptive human walking based on the least action principle. Taking inspiration from Lagrangian mechanics, a Lagrangian is defined as effort minus security, with two different specific mathematical forms. The resulting Euler–Lagrange equations are then solved to obtain the equations of motion. The model is validated using experimental data from a virtual reality crossing simulation with human participants. We thus conclude that the least action principle provides a useful tool in the study of interceptive walking.


2000 ◽  
Vol 142 (1-4) ◽  
pp. 235-243 ◽  
Author(s):  
B. Tabarrok ◽  
W. L. Cleghorn

Author(s):  
V. Joseph

AbstractA solution of Einstein's vacuum field equations, apparently new, is exhibited. The metric, which is homogeneous (that is, admits a three-parameter group of motions transitive on space-like hypersurfaces), belongs to Taub Type V. The canonical form of the Riemann tensor, which is of Petrov Type I, is determined.


Sign in / Sign up

Export Citation Format

Share Document