Reconstructing Excitation Forces Acting on a Baffled Plate Using Nearfield Acoustical Holography

2018 ◽  
Vol 26 (01) ◽  
pp. 1750028
Author(s):  
Pan Zhou ◽  
Sean F. Wu ◽  
Wanyou Li

This paper deals with reconstruction of excitation forces and analyses of the root causes of vibro-acoustic responses of an elastic structure by using nearfield acoustical holography and modal expansion theory. Derivations of formulations for reconstructing excitation forces, including distributed, line, and point forces, acting on the back side of a rectangular thin plate simply supported on an infinite, rigid baffle, are presented. The reason for choosing a baffled plate is that analytic solutions to vibro-acoustic responses are readily available, so the accuracy in reconstruction can be examined rigorously. For simplicity, the effect of fluid loading is neglected, and input data are assumed error-free. Numerical examples of reconstructing excitation forces are presented, and results agree very well with benchmark values. The impacts of various parameters, such as the ratio of measurement aperture versus plate size, microphone spacing, standoff distance, the number of natural modes, etc., on reconstruction accuracy are investigated. Needless to say, in practice such idealized scenario is nonexistent and the accuracy in reconstruction of excitation forces are severely compromised by measurement errors and interfering signals. Nevertheless, the concept as presented is sound, except that more effective regularizations must be employed to enhance signal to noise ratio, and reconstruction results.

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3455
Author(s):  
Francisco Javier Meca Meca ◽  
Ernesto Martín-Gorostiza ◽  
Miguel Ángel García-Garrido ◽  
David Salido-Monzú

Transimpedance amplifiers (TIA) are widely used for front-end signal conditioning in many optical distance measuring applications in which high accuracy is often required. Small effects due to the real characteristics of the components and the parasitic elements in the circuit board may cause the error to rise to unacceptable levels. In this work we study these effects on the TIA delay time error and deduce analytic expressions, taking into account the trade-off between the uncertainties caused by the delay time instability and by the signal-to-noise ratio. A specific continuous-wave phase-shift case study is shown to illustrate the analysis, and further compared with real measurements. General strategies and conclusions, useful for designers of this kind of system, are extracted too. The study and results show that the delay time thermal stability is a key determinant factor in the measured distance accuracy and, without an adequate design, moderate temperature variations of the TIA can cause extremely high measurement errors.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3400
Author(s):  
Tulay Ercan ◽  
Costas Papadimitriou

A framework for optimal sensor placement (OSP) for virtual sensing using the modal expansion technique and taking into account uncertainties is presented based on information and utility theory. The framework is developed to handle virtual sensing under output-only vibration measurements. The OSP maximizes a utility function that quantifies the expected information gained from the data for reducing the uncertainty of quantities of interest (QoI) predicted at the virtual sensing locations. The utility function is extended to make the OSP design robust to uncertainties in structural model and modeling error parameters, resulting in a multidimensional integral of the expected information gain over all possible values of the uncertain parameters and weighted by their assigned probability distributions. Approximate methods are used to compute the multidimensional integral and solve the optimization problem that arises. The Gaussian nature of the response QoI is exploited to derive useful and informative analytical expressions for the utility function. A thorough study of the effect of model, prediction and measurement errors and their uncertainties, as well as the prior uncertainties in the modal coordinates on the selection of the optimal sensor configuration is presented, highlighting the importance of accounting for robustness to errors and other uncertainties.


1992 ◽  
Vol 70 (9) ◽  
pp. 696-705 ◽  
Author(s):  
A-K. Hamid ◽  
I. R. Ciric ◽  
M. Hamid

The problem of plane electromagnetic wave scattering by two concentrically layered dielectric spheres is investigated analytically using the modal expansion method. Two different solutions to this problem are obtained. In the first solution the boundary conditions are satisfied simultaneously at all spherical interfaces, while in the second solution an iterative approach is used and the boundary conditions are satisfied successively for each iteration. To impose the boundary conditions at the outer surface of the spheres, the translation addition theorem of the spherical vector wave functions is employed to express the scattered fields by one sphere in the coordiante system of the other sphere. Numerical results for the bistatic and back-scattering cross sections are presented graphically for various sphere sizes, layer thicknesses and permittivities, and angles of incidence.


Author(s):  
Jindrich Liska ◽  
Jan Jakl ◽  
Sven Kunkel

Abstract Turbine-generator torsional vibration is linked to electrical events in the power grid by the generator air-gap torque. Modern power systems are subject to gradual transformation by increasing flexibility demands and incorporation of renewable resources. As a result, electrical transient events are getting more frequent and thus torsional vibration is getting more and more attention. Especially in the case of large steam and gas turbines torsional vibration can cause material fatigue and present a hazard for safe machine operation. This paper freely builds on previous work, where a method for torsional vibration evaluation using an incremental encoder measurement was presented, in that it supplements error considerations to this methodology. Measurement errors such as precision of the rotor encoder manufacturing, choice of the proper sensor, its signal to noise ratio and the error of instantaneous velocity computation algorithm are analyzed. The knowledge of these errors is essential for torsional vibration as there is an indirect and relatively complicated path from the measurement to the final torsional vibration results compared to other kinds of vibration. The characteristics of particular errors of the processing chain are validated both on experimental data from a test rig as well as field data measured on turbine-generators in power plants.


Sign in / Sign up

Export Citation Format

Share Document